

314349

Peoples Has Fark
Rogers Park

URS

REVISED FOCUSED SITE
INVESTIGATION/
REMEDIATION OBJECTIVES/
REMEDIAL ACTION PLAN/
REMEDIAL ACTION COMPLETION
REPORT

THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION 6659 NORTH KEDZIE AVENUE CHICAGO, ILLINOIS

FOR CLARE CORPORATION AND GENERAL SEMICONDUCTOR, INC.

Illinois Environmental Protection Agency Bureau of Land Remedial Project Management Section 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

For Illinois EPA Use:	1
Log No	I
	Ì

Site Remediation Program Form (DRM-2) (To Be Submitted with all Plans and Reports)

Site Name: Peoples Gas - Rogers Park Substation Street Address: 6659 North Kedzie Avenue City: Chicago Illinois Inventory I. D. Number: IEMA Incident Number: H. Remediation Applicant: Applicant's Name: Harry Andersen Company: Clare Corporation
City:Chicago Illinois Inventory I. D. Number: IEMA Incident Number: II. Remediation Applicant:
IEMA Incident Number:
II. Remediation Applicant:
Ambient's Name: Harry Andersen Company: Clare Corporation
Mylikali Siralis.
Street Address: 78 Cherry Hill Drive
City: <u>Beverly</u> State: <u>MA</u> ZIP Code: <u>01915</u> Phone: <u>978-524-6722</u>
Environmental Protection Act (415 ILCS 5), implementing regulations, and the review and evaluation services agreement. Remediation Applicant's Signature: Aury Curlescum Date: 2/20/62 II. Contact Person:
Contact's Name: Allison Miller Company: Peoples Gas
Street Address: 130 E. Randolph Dr.
City: Chicago State: IL ZIP Code: 60601 Phone: 312-240-4832
V. Review & Evaluation Licensed Professional Engineer ("RELPE"), if applicable:
RELPE's Name: N/A Company:
Street Address:
City: State: ZIP Code: Phone:
Registration Number: License Expiration Date:

All information submitted is available to the public except when specifically designated by the Remediation Applicant to be treated confidentially as a trade secret process in accordance with the Illinois Compiled Statutes, Section 7(a) of the Environmental Protection Act, applicable Rules and Regulations of the Illinois Pollution Control Board and applicable Illinois EPA rules and guidelines. The Illinois EPA is authorized to require this information under Sections 415 ILCS 5/58-58.12 of the Environmental Protection Act, and regulations promulgated thereunder. Disclosure of this information is required as a condition of participation in the Site Remediation Program. Failure to do so may prevent this form from being processed and could result in your plan(s) or report(s) being rejected. This form has been approved by the Forms Management Center.

Remedial Action Completion Report, The Peoples Gas Light and Coke Company, Rogers Park Substation, Chicago, Illinois

V. Project Documents Being Submitted:

Document Title: see above **	Date of Preparation of Plan or Report: Feb. 22, 2002
Prepared by: URS Corporation	Prepared for: CP Clare Corporation and General Semicondu
Type of Document Submitted:	☐ Sampling Plan
Site Investigation Report - Comprehensive	☐ Health and Safety Plan
K Site Investigation Report - Focused	Community Relations Plan
Remediation Objectives Report-Tier 1 or 2	☐ Risk Assessment
Remediation Objectives Report-Tier 3	Contaminant Fate & Transport Modeling
K Remedial Action Plan	☐ Environmental Remediation Tax Credit - Budget Plan Review
K Remedial Action Completion Report	Other:
Document Title:	Date of Preparation of Plan or Report:
Prepared by:	Prepared for:
Type of Document Submitted:	☐ Sampling Plan
☐ Site Investigation Report - Comprehensive	☐ Health and Safety Plan
☐ Site Investigation Report - Focused	☐ Community Relations Plan
Remediation Objectives Report-Tier 1or 2	☐ Risk Assessment
Remediation Objectives Report-Tier 3	Contaminant Fate & Transport Modeling
Remedial Action Plan	☐ Environmental Remediation Tax Credit - Budget Plan Review
Remedial Action Completion Report	Other:
D	Data of Demonstrate of Planton Demonstra
Document Title:	i
Prepared by:	riepated for.
Type of Document Submitted:	☐ Sampling Plan
☐ Site Investigation Report - Comprehensive	☐ Health and Safety Plan
☐ Site Investigation Report - Focused	Community Relations Plan
Remediation Objectives Report-Tier 1 or 2	☐ Risk Assessment
Remediation Objectives Report-Tier 3	☐ Contaminant Fate & Transport Modeling
Remedial Action Plan	☐ Environmental Remediation Tax Credit - Budget Plan Review
Remedial Action Completion Report	Other:
VI. Professional Engineer's Seal or S	tamp:
I attest that all site investigations or remedial activities	s that are the subject of this plan(s) or report(s) were performed under my direction, and this
document and all attachments were prepared under my	y direction or reviewed by me, and to the best of my knowledge and belief, the work described
	in accordance with the Illinois Environmental Protection 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
740, and generally accepted engineering practices, and	
Engineer Name: Gail Artrip,	Professional Engineer's Scal & Stamp: NO.062-046109
Company: URS Corporation Phone: 84	7-228-0707
Registration Number: 062-046109	
11-1-00	CIVILIA
Signoture:	License Expiration Date: 11/30/03

TABLE OF CONTENTS

	<u>ra</u>	<u>ge</u>
EXEC	CUTIVE SUMMARY	. v
1.0	INTRODUCTION	. 1
2.0	FACILITY BACKGROUND AND USE	. 1
3.0	BASIS OF INVESTIGATION	. 3
4.0	PEOPLES GAS SITE INVESTIGATION	. 4
5.0	GEOLOGY/HYDROGEOLOGY	. 5
6.0	APPLICABLE REMEDIATION OBJECTIVES	. 7
7.0	ANALYTICAL RESULTS	. 9
8.0	REMEDIAL STRATEGY/REMEDIAL ACTION	10
9.0	SPECIAL CONDITIONS	12
10.0	RESULTS/ENDANGERMENT ASSESSMENT	14
11.0	CONCLUSIONS	14

TABLES

TABLE 1	SUMMARY OF GEOTECHNICAL RESULTS
TABLE 2	SUMMARY OF TACO INPUT PARAMETERS
TABLE 3	SUMMARY OF POTENTIALLY APPLICABLE SOIL REMEDIATION OBJECTIVES
TABLE 4	PHASE II SITE INVESTIGATION - SOIL ANALYTICAL DATA
TABLE 5	CONFIRMATORY SOIL SAMPLING ANALYTICAL DATA
TABLE 6	CONSTRUCTION WORKER SOIL REMEDIATION OBJECTIVES

FIGURES

FIGURE 1	SITE LOCATION MAP
----------	-------------------

FIGURE 2 SITE MAP

FIGURE 3 SOIL BORING LOCATION MAP

FIGURE 4 GEOLOGIC CROSS-SECTION

FIGURE 5 CONFIRMATORY SOIL SAMPLING MAP

FIGURE 6 FOCUSED AREA OF INVESTIGATION INCLUDING AREAS WITH NO

FUTURE LAND USE RESTRICTIONS/SITE BASE MAP

FIGURE 7 FOCUSED AREA OF INVESTIGATION INCLUDING AREAS WITH

INDUSTRIAL/COMMERCIAL FUTURE LAND USE RESTRICTIONS/SITE

BASE MAP

APPENDICES

APPENDIX A SOIL BORING LOGS

APPENDIX B OFF-SITE BORING LOGS/LOCATION MAPS

APPENDIX C GEOTECHNICAL DATA

APPENDIX D	TIER 2 SOIL REMEDIATION OBJECTIVES SPREADSHEETS
APPENDIX E	PHASE II INVESTIGATION LAB ANALYTICAL REPORTS
APPENDIX F	EXCAVATION CONFIRMATORY LAB ANALYTICAL REPORTS
APPENDIX G	GROUNDWATER MODELLING RESULTS
APPENDIX H	PROFESSIONAL ENGINEER CERTIFICATION

REVISED FOCUSED SITE INVESTIGATION REPORT/ REMEDIATION OBJECTIVES REPORT/ REMEDIAL ACTION PLAN/

REMEDIAL ACTION COMPLETION REPORT THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION CHICAGO, ILLINOIS

EXECUTIVE SUMMARY

A focused Phase II environmental site investigation was undertaken at the Peoples Gas Light and Coke Company - Rogers Park Substation facility located at 6659 North Kedzie Avenue (Cook County) in Chicago, Illinois (Peoples Gas or the Subject Site). The investigation was prompted as a result of the detection of subsurface soil contamination at the neighboring property located at 3101 West Pratt Avenue (3101 Site), at an area adjacent to the northern property boundary of the Subject Site. No groundwater contamination was found on the 3101 Site, and the Illinois Environmental Protection Agency (Illinois EPA) concurred with the finding that the soil component of the groundwater ingestion exposure pathway should be eliminated from consideration. Both of the groundwater ingestion exposure pathways are eliminated from consideration at the Peoples Gas site on the basis of reliance on the Chicago groundwater ordinance.

The 3101 Site was entered voluntarily into the Illinois EPA's Site Remediation Program. Illinois EPA assigned a site number of 0316020001 (Cook County) for the 3101 Site. An extensive investigation of the 3101 Site was conducted to determine the presence and extent of contamination. Soils contaminated with various chlorinated solvents and heavy metals (specifically mercury, chromium, and lead) were found to exist from the near surface to depths of approximately 17 feet along the western half of the south property line area on the 3101 Site. This information was provided to the Illinois EPA. In response, the Illinois EPA requested that CP Clare Corporation and General Semiconductor, Inc. (fka General Instrument Corporation), collectively the parties undertaking remediation of the 3101 Site (the Remediating Parties), contact appropriate representatives of Peoples Gas, provide pertinent analytical findings, and request permission to conduct a limited (i.e., focused) soil investigation on the Peoples Gas property in proximity to the common property line.

Multiple phases of focused soil investigation were carried out at the Peoples Gas property (January 1996; August 1996; and December 1997) for the purpose of delineating the lateral and vertical extent

of soil contamination. Two sets of proposed soil remediation objectives were developed as the basis against which to compare the resulting analytical data. The first set assumed a residential future use of the Peoples Gas property; the second set assumed a commercial/industrial future use of the Peoples Gas property. Based on the results of the investigations, soils were found to exceed one or both sets of proposed soil remediation objectives at certain locations on the Peoples Gas property for various chlorinated solvents. No mercury, chromium or lead contamination above residential or industrial/commercial soil remediation objectives was detected on the Peoples Gas property. The potential presence of contaminants, other than volatile organic compounds, mercury, lead, and chromium, was not evaluated since other contaminants were not found to be of concern on the adjacent 3101 Site which formed the basis of the investigation.

Representatives of Peoples Gas and the Remediating Parties agreed upon a remedial strategy for addressing the soil contamination on the Peoples Gas property which consisted of excavation followed by low temperature thermal desorption. Remedial activities on the Peoples Gas Site were scheduled to occur concurrent with remedial activities on the 3101 Site due to the interrelated nature of planned activities, including excavation and treatment of soils from both sites along the common property line and nearby sewer work on the 3101 Site. The affected area of the Peoples Gas property is in close proximity to large diameter subsurface natural gas transmission mains and appurtenant equipment. As such, careful coordination and execution of the work was imperative in order to protect the infrastructure. Because of the depth to which soil contamination was found to exist on the Peoples Gas property, installation of steel sheet piling was required to prevent undermining of the transmission mains. Approximately 275 lineal feet of cantilevered steel sheeting was installed to a depth of 40 feet below ground surface. The sheeting will remain in place.

Following installation of the sheet piling, excavation of impacted soils commenced. An estimated 2,340 cubic yards of soils were excavated from the Peoples Gas Site, stockpiled within the 3101 Site building (a RCRA containment building), characterized for its chemical content, and, where indicated, treated on the 3101 Site via low temperature thermal desorption in accordance with Dames & Moore's December 13, 1995 *Design Report*. Confirmatory excavation floor and wall samples were also collected in accordance with the approved *Design Report*. Stockpiled soils that were found not to exceed Illinois EPA-approved residential soil remediation objectives, as well as soils thermally treated to meet residential soil remediation objectives, were returned to the open excavations on the Peoples Gas property in accordance with the terms established by representatives of Peoples Gas and the Remediating Parties, and consistent with the prescribed soil management methods outlined in the approved *Design Report*.

Low temperature thermal desorption treatment activities at the 3101 Site voluntarily ceased on October 2, 1996 as a result of concerns expressed by the public and governmental authorities. At that time, approximately 92% (2,340 of 2,530 cubic yards) of the impacted soils on the Peoples Gas property had already been remediated via excavation. A portion of the excavated soils had already been thermally treated and returned to the Peoples Gas open excavations. The remaining excavated soils, which had been staged in the building at the 3101 site awaiting thermal treatment, were instead transported off site for incineration between December 1996 and February 1997. No additional impacted soils were excavated from the Peoples Gas Site following the October 2, 1996 shutdown. Following discussions between representatives of Peoples Gas and the Remediating Parties, it was agreed that no additional soils would be excavated and that soils to be used for backfilling would be imported to the Peoples Gas Site from a quarry. Crushed aggregate meeting the Illinois Department of Transportation materials specifications for CA-6 or CA-7, commonly used in road construction as asphalt subbase, was brought to the Peoples Gas Site for use as backfill. This work was completed in October through December 1997. Site regrading, regravelling, fence restoration and other related tasks were also completed at that time.

At the close of remedial activities and site restoration, certain areas within the focused area of investigation on the Peoples Gas Site remain underlain by soils with contamination above residential but below commercial/industrial soil remediation objectives. Other portions of the focused area of investigation meet applicable soil remediation criteria. As such, a deed restriction will be applied to portions of the focused area of investigation to ensure a future commercial/industrial land use. The total area of the focused site investigation occupies approximately 6,339 square feet or 0.15 acres. The two areas within the focused investigation area where an industrial/commercial deed restriction will be imposed measure 349 square feet and 483 square feet for a total of 832 square feet or 0.02 acres. Scaled drawings and legal descriptions for each of these areas are provided in this report. In addition, the drawings and legal descriptions delineate the aerial extent of the investigations carried out on the Peoples Gas property to which this report is limited. Two focused No Further Remediation letters are requested for the area investigated: one conditioned upon implementation of the future commercial/industrial land use for the two areas where contamination will remain, and one without future land use restrictions.

REVISED FOCUSED SITE INVESTIGATION REPORT/ REMEDIATION OBJECTIVES REPORT/ REMEDIAL ACTION PLAN/ REMEDIAL ACTION COMPLETION REPORT THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION

CHICAGO, ILLINOIS

1.0 INTRODUCTION

A focused Phase II environmental site investigation was undertaken at the Peoples Gas Light and Coke Company - Rogers Park Substation facility located at 6659 North Kedzie Avenue (Cook County) in Chicago, Illinois (Peoples Gas or the Subject Site). Refer to Figure 1 for the location of the Subject Site. The investigation was prompted as a result of the detection of subsurface soil contamination at the neighboring property located at 3101 West Pratt Avenue (3101 Site), at an area adjacent to the northern property boundary of the Subject Site in proximity to the common property line. The work reported herein was conducted in accordance with the Illinois Environmental Protection Agency's (Illinois EPA's) Site Remediation Program regulations contained in Title 35 Illinois Administrative Code (35 IAC) Part 740 and with the Tiered Approach to Corrective Action Objectives (TACO) regulations contained in 35 IAC Part 742. Two focused No Further Remediation (NFR) letters are sought for a 0.15-acre strip (i.e., the focused site investigation area) along the northern boundary of the Subject Site; one based on an unrestricted future land use for portions of the study area and one based on an industrial/commercial future land use deed restriction for the balance of the study area. This report makes reference to work performed by Dames & Moore and URS Corporation. Dames & Moore is a wholly owned subsidiary of URS Corporation.

2.0 FACILITY BACKGROUND AND USE

The Peoples Gas - Rogers Park Substation occupies 16.15 acres. Most of the Peoples Gas property is occupied by grassy areas, particularly along the southern and eastern portions of the property. The Peoples Gas Site is surrounded by chain link fencing and may only be accessed through a 24-hour guarded entrance. Refer to Figure 2 for a layout of the Site. The 0.15-acre focused site investigation area is also shown on this figure.

According to Peoples Gas representatives, the facility was constructed in 1926 by Peoples Gas as a gas storage facility. The Subject Site housed a 15 million cubic foot waterless (tar-seal) gas holder

as well as an exhauster house (now the Sub Shop Building), a compressor room (now the Boiler House, Store Room, and Computer Building), and several other smaller structures. The property was expanded to Albion Avenue on the south with an additional land purchase of 6.2 acres in 1956. Gas storage at the site ceased in 1969 with the gas holder being dismantled at about that time.

The Peoples Gas Site is currently in use as a natural gas transmission station. According to Peoples Gas representatives, no change from the current land use is planned, particularly in proximity to the study area.

The Subject Site is currently used as a Sub Shop for the North District, and until recently, as a gate station. The Sub Shop building serves as a reporting location for Distribution Department and Service Department crews. Transportation Department personnel service company vehicles in the garage building. Until a few months ago, the fenced substation area (which includes the focused site investigation area near the northern property boundary where soil contamination was found and where remediation activities were carried out) contained a gate station (gas purchase point) which included meter runs, heaters, high pressure regulators, interstation main piping, and medium pressure regulators. Most of this equipment has recently been relocated to a new gate station located about a mile northwest of the Peoples Gas Site. Currently, the area within the substation fencing includes gas heaters, interstation main piping, and medium pressure regulators.

The surrounding land use is as follows: to the east and south are single family residences across Whipple Street and Albion Avenue, respectively; to the west is Kedzie Avenue, then a narrow, vacant grassy strip, then the North Shore Channel; and to the north is the 3101 Site, a currently unoccupied former manufacturing facility.

The legal description for the entire Peoples Gas - Rogers Park Substation facility¹ is as follows:

The South 14 feet of Lot 15, Lots 16 to 27 both inclusive and the North 14 feet of Lot 28, all in Salinger and Hubbards second addition to Rogers Park in the Southwest Quarter of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian.

¹The legal description for the total Peoples Gas facility is presented. However, the findings and actions reported herein apply to only a small portion of Area No. 1 (Lot 2) as further defined in the Special Conditions section of this report.

That part of the North and South alley (now vacated) lying West of North Whipple Street.

That part of North Shore Avenue (now vacated) lying West of North Whipple Street.

Lot 2 in Subdivision of West Half (by area) of Southwest Fractional Quarter of said Section 36 lying North of the Indian Boundary Line, together with the 33 feet East of and adjoining Lot 2 aforesaid, extending from the North line of said Lot 2 extended East, to the South line of said Lot 2 extended East.

That part of Lot 3 in the Subdivision of the West Half (by area) of the Southwest Fractional Quarter North of the Indian Boundary Line of said Section 36, which lies North of a line 1328.42 feet North of the South line of the Southwest Fractional Quarter of Section 36, Township 41 North, Range 13 East.

Also that part of the West Half of the Southwest Fractional Quarter of said Section 36 South of the Indian Boundary Line, lying North of the South 1328.42 feet and West of the East 505.82 feet of said West Half of the Southwest Fractional Quarter of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian, except that part of Lots 2 and 3 in Subdivision of West Half (W. ½), (in area) of Southwest Fractional Quarter (S.W. Frac. 1/4) of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian, in Cook County, Illinois, lying North of the Indian Boundary Line and lying West of the following described line:

Beginning at a point on the North line of Lot 2, a distance of Forty-eight and Twenty six hundredths (48.26) feet East of the Northwest corner of said lot,

thence South in a straight line to a point on the South line of Lot 3, a distance of Sixty-two and Twenty-three hundredths (62.23) feet East of the Southwest Corner of said Lot 3.

3.0 BASIS OF INVESTIGATION

The 3101 Site, which occupies approximately 6 acres and is located directly to the north of the Subject Site, was voluntarily entered into the Illinois EPA's Site Remediation Program in 1995. Historic activities at the 3101 site consisted of the manufacture of wetted and dry reed capsules, relays, surge arresters, and other small electronic components used in electronic devices. Operations began on the 3101 Site in 1952 and ceased in the early 1990s. An extensive investigation of the 3101 Site was conducted to determine the presence and extent of contamination. Soils contaminated with various chlorinated solvents and heavy metals (specifically mercury, chromium, and lead) were found to exist from the near surface to depths of approximately 17 feet along the western half of the

south property line area on the 3101 Site². Soil contamination of the Subject Site is believed to have occurred as a result of spills and/or releases of solvents, specifically tetrachloroethene (PCE) and trichloroethene (TCE), on the ground surface south of the 3101 Site's former Butler building during the 1950s. Refer to Figure 3 for a perspective of the relative location of the various property lines and former Butler building. PCE and TCE had been historically used on the 3101 Site for parts cleaning activities. In addition to PCE and TCE, the contaminants of concern identified on the Subject Site included various daughter products, such as 1,2-dichloroethene and vinyl chloride. Because this area is flat, sheet flow across the common property line onto the Peoples Gas Site may have occurred. This information was provided to the Illinois EPA in a May 8, 1995 Dames & Moore document entitled *Site Investigation Report/Site Remediation Work Plan, CP Clare/General Instrument Corporation Site, 3101 West Pratt Avenue, Chicago, Illinois.* In response to this report, the Illinois EPA requested that the Remediating Parties make contact with appropriate representatives of Peoples Gas, provide pertinent analytical findings, and request permission to conduct a limited (i.e., focused) soil investigation on the Peoples Gas property in proximity to the common property line.

4.0 PEOPLES GAS SITE INVESTIGATION

During the period from January 1996 through December 1997, Dames & Moore conducted four separate sampling events aimed at delineating the lateral and vertical extent of soil impacts on the Peoples Gas Site in the 0.15-acre focused site investigation area shown on Figure 2. A total of 21 soil borings were advanced at various locations within the focused site investigation area in proximity to the north property line using either a geoprobe unit or hand augering. The chemicals of concern were limited to mercury, chromium, lead, and VOCs for this investigation. Refer to Figure 3 for the locations of the soil borings. Appendix A contains copies of the soil boring logs. Samples were collected using polyethylene liners within the geoprobe tool. Portions of the liner were then capped and placed on ice pending shipment to the laboratory, or were slit open along the long axis with the soil contents transferred to laboratory-provided, clean glass jars and placed on ice. Samples obtained via hand auger were likewise transferred to laboratory-provided, clean glass jars pending shipment to the lab. An additional soil volume was also subjected to headspace analysis

²Contaminated soils were also encountered at other locations on the 3101 Site, but none close to the common property boundary. As such, these other locations are not pertinent for purposes of this report. See Dames & Moore's Remedial Action Completion Report, 3101 West Pratt Avenue Site dated December 24, 1997.

using a photoionization detector (PID). Samples were selected for analysis based on visual and olfactory observations, headspace readings, and spatial position. Many of the samples were collected within the upper five feet to assess the potential for surface sheet flow followed by infiltration into the soils on the Peoples Gas Site from historic surface land releases which may have occurred on the 3101 Site. In addition, numerous samples were collected between depths of 14 and 18 feet below ground surface (bgs) to evaluate the potential for preferential migration along the existing combined sanitary and storm sewer which traverses the 3101 Site in proximity to the Peoples Gas property. The invert of the sewer occurs at a depth of approximately 15 feet bgs.

Analytical samples were kept on ice and couriered to the laboratory within 48 hours of collection. All samples were analyzed in accordance with SW-846 methologies. All drilling and sampling equipment was steam-cleaned prior to the start of the drilling program and between borings. All sampling equipment was decontaminated between sampling intervals. Decontamination consisted of an Alconox solution wash and several clean water rinses, with collection of the resulting rinsate. Most of the borings were advanced to a depth of 25 feet bgs. Soils were classified in accordance with the Unified Soil Classification System. With the exception of three borings, only silty clay and clayey silt soils, some with occasional minor amounts of sand or gravel, were encountered. Borings PG-6, PG-7 and PG-8 encountered sand lenses no more than two feet thick between 7 to 11 feet bgs. These three borings are nearest the large diameter piping within the substation, and the coarser soils represent fills associated with pipe backfill.

5.0 GEOLOGY/HYDROGEOLOGY

Soil conditions encountered during the Peoples Gas site investigation consisted of three to four inches of gravel fill overlying native silty clays or clayey silts throughout the depth drilled, typically 25 feet below ground surface (bgs). Figure 4 presents a geologic cross-section for the site. An exception to this pattern was noted in borings PG-6, PG-7, and PG-8, where clay and sand fills were encountered to depths up to 11 feet bgs. These three borings were advanced in very close proximity to Peoples Gas overhead and buried infrastructure, and represented previously disturbed soil conditions. On the adjacent 3101 Site, two soil borings (SB-3 and SB-27) were advanced to a depth of 50 feet bgs. Appendix B includes copies of the logs for these two borings and a figure which shows their location.

Except as noted above, below the upper two to three feet of fill, each boring encountered consistent

soil conditions consisting of brown to gray silty clay with a trace of fine to coarse sand and fine gravel throughout the remaining depth drilled. The silty clay units were soft for the upper 40 feet, grading to stiff to a depth of 50 feet bgs. Laboratory permeability testing was performed on four native silty clay samples obtained on the 3101 Site. A summary of this data is as follows:

Boring ID	Soil Depth Tested (ft bgs)	Measured Permeability (cm/sec)	Average Soil Permeability (cm/sec)
SB-3	9-11	2.7 x 10 ⁻⁸	
SB-27	27-28	3.7 x 10 ⁻⁸	7.05 10-8
SB-49	8-10	9.0 x 10 ⁻⁸	7.85 x 10 ⁻⁸
SB-50	8-10	1.6 x 10 ⁻⁷	

Soil samples obtained for geotechnical analyses at these depths were believed to originate from areas that had not been impacted from historic site operations. The samples intended for geotechnical analysis were collected using Shelby tubes, and no samples for chemical analysis were available from the Shelby tubes, and no other sampling intervals from these borings were sent for chemical analysis, except for one sample obtained from boring SB-3. A soil sample from boring SB-3 at 11 to 13 feet bgs was submitted for VOC and metals analyses to verify the absence of VOCs and to obtain background information for naturally-occurring metals. The results from the SB-3 sample did not exceed residential soil remediation objectives. On a separate nearby site (approximately 2/3 miles), an underlying dolomite bedrock aquifer was encountered at an approximate depth of 80 feet bgs. Bedrock on the Subject Site is predicted to occur at similar depth. Copies of the logs for the two 50-foot borings (SB-3 and SB-27) and geotechnical borings from the 3101 Site, and the 80-foot boring (DM-1) on a nearby site are included in Appendix B. Maps depicting the locations of these borings are also included in this appendix.

As mentioned, the above geotechnical samples were obtained from soil borings advanced on the 3101 Site for the purpose of developing site-specific Tier 2 soil remediation objectives. Because of the similar nature of the soils on both sites, it is reasonable to apply the 3101 Site geotechnical data to the Peoples Gas Site as well. A summary of the geotechnical data is provided in Table 1. Copies of the original geotechnical data are included as Appendix C.

The occurrence of groundwater within the soil borings was very inconsistent. In this flat study area, the depth at which groundwater was measured ranged from 7 to 17 feet bgs to not observed throughout the total depth drilled, 25 feet. This erratic pattern, coupled with the fine-grained quality of the native soils, suggests that no true water table condition is present in the northern portion of the Peoples Gas property. Groundwater is present only in a perched condition. The silty clays and clayey silts represent an aquitard, retarding both groundwater flow and contaminant migration. No groundwater samples were collected on the Peoples Gas Site.

6.0 APPLICABLE REMEDIATION OBJECTIVES

The analytical suite chosen for the Peoples Gas Site was based on the contaminants of concern identified at the 3101 Site, the adjacent source site. These included volatile organic compounds (VOCs), chromium, lead, and mercury.

6.1 SOIL REMEDIATION OBJECTIVES

For soils, TACO assumes three possible human exposure pathways, including: 1) the inhalation of vapors or particulates emanating from contaminated soils, 2) the direct ingestion of contaminated soils, and 3) the potential for the migration of soil contamination, via leaching, into an underlying potable groundwater source (also referred to as the soil component of the groundwater ingestion pathway). With respect to the 3101 Site, the soil component of the groundwater ingestion pathway was excluded from consideration for several reasons: a massive silty clay unit was found to extend beneath the adjacent site to a depth of 50 feet, extremely low measured soil permeabilities, the absence of detected soil contamination above residential soil remediation objectives at depths greater than 13 feet below ground surface, the absence of any potentially potable aquifer within the upper fifty feet of soils, Chicago's provision of and reliance upon potable waters originating from Lake Michigan, the City of Chicago ordinance prohibiting the installation or use of drinking water wells within the city limits, and the Memorandum of Understanding executed between the City of Chicago and the Illinois EPA.

Given the proximity of the area of the Peoples Gas Site being remediated to the 3101 Site and the fact that groundwater impacts above Class II criteria were not measured in the 3101 Site monitoring wells, coupled with the soil boring logs which revealed predominantly silty clays and clayey silts on the Peoples Gas property, it follows that the soil component of the groundwater ingestion exposure

pathway should likewise be eliminated from consideration on the Peoples Gas property. Furthermore, no evidence of free product was observed during soil boring or remediation activities, and the soil saturation limit and soil attenuation capacities corresponding to various contaminants were not exceeded based on review of the analytical data. All groundwater ingestion exposure route elimination criteria set forth in 742.300, 742.305, and 742.320 are satisfied at this site. Reliance on the Chicago groundwater ordinance and MOU as institutional controls has been assumed. The proposed soil remediation objectives are based on the two remaining potential human exposure pathways: the inhalation of vapors or particulates emanating from contaminated soils, and the direct ingestion of contaminated soils.

Two sets of soil remediation objectives have been proposed for the subject Site: one set assuming a residential future use of the property, and one set assuming a commercial/industrial future land use. A combination of Tier 1/Tier 2 soil remediation objectives has been established for the Site in accordance with the Illinois EPA's TACO regulations found in 35 IAC Part 742. The proposed soil remediation objectives, assuming both potential future land use scenarios, are included in Tables 4 and 5 for ease of comparison against the analytical data obtained from the Peoples Gas Site. The chemicals for which Tier 2 soil remediation objectives were calculated are as follows:

<u>Chemical</u>	Tier 2 Residential	Tier 2 Industrial/Commercial
Tetrachloroethene	12 ppm ³	110 ppm ³
Trichloroethene	58 ppm^3	173 ppm
Vinyl Chloride	0.3 ppm^3	0.89 ppm

Table 2 presents a summary of the TACO input parameters used to generate the Tier 2 soil remediation objectives for three VOCs. A more detailed presentation of the potentially applicable Tier 1/Tier 2 soil remediation objectives under various land use scenarios is shown on Table 3. Spreadsheets resulting from the use of an in-house computer program used to calculate the Tier 2 site-specific soil remediation objectives are provided in Appendix D. Per the request of Illinois EPA, URS performed Tier 2 calculations using each independent set of geotechnical data obtained for the

The soil remediation objective presented represents the Tier 1 soil remediation objective associated with the ingestion exposure pathway value since the Tier 2 soil inhalation remediation objective calculated was higher than the Tier 1 ingestion value.

site. We determined that use of the data from boring SB-47, 4 to 6 feet bgs, resulted in the most stringent Tier 2 values, and the values presented above are based on the use of this most conservative set of geotechnical data. Though not presented in Tables 4 and 5, construction worker soil remediation objectives were compared against site analytical data. It was verified that no concerns exist with regard to potential construction worker exposure. Table 6 presents the Tier 1 and Tier 2 construction worker soil remediation objectives used for this comparison for the chemicals of concern.

URS reviewed Appendix A, Tables E and F of the TACO regulations, which identify similar-acting noncarcinogenic and carcinogenic chemicals, respectively. According to the TACO Mixture Rule, it is not necessary to assess cumulative effects of noncarcinogens in soil under a Tier 1 assessment because of the inherent conservative nature of the Tier 1 objectives. The noncarcinogens detected in site soils identified in Table E did not require the derivation of site-specific Tier 2 soil remediation objectives because the concentrations at which they were detected were all well below the Tier 1 published values. As such, the potential cumulative effect of noncarcinogens was not assessed by URS for this site. Several of the contaminants of concern at the subject site are identified in Table F as carcinogenic, mostly affecting the liver. According to the TACO Mixture Rule, soil is exempt from the rule for carcinogens because of the allowable risk range under both Tier 1 and Tier 2 evaluations. Consequently, URS was not required to assess the potential cumulative effect for carcinogens.

6.2 GROUNDWATER REMEDIATION OBJECTIVES

No groundwater contamination above Illinois EPA's TACO Class II groundwater remediation objectives was found in any of the four groundwater monitoring wells installed and sampled on the adjacent 3101 Site. Three of the monitoring wells, designated as VMW-1, VMW-3, and MW-18, had previously been located within 50 feet of the common property line. The four groundwater wells had been installed in close proximity to some of the more contaminated soil zones on the 3101 Site, yet the samples obtained from these wells did not indicate unacceptable levels of groundwater contamination. As such, no further evaluation of impacts to groundwater was indicated on the 3101 Site. Since there was no groundwater contamination on the 3101 Site in more heavily contaminated soils, and since there is no usable or potentially potable aquifer underlying the Subject Site for significant depths, no evaluation of the potential for groundwater contamination on the Peoples Gas Site was warranted. Reliance on the Chicago groundwater ordinance and MOU has been assumed

as an institutional control for the elimination of the groundwater ingestion exposure pathway.

7.0 ANALYTICAL RESULTS

As previously mentioned, a total of 21 soil borings were advanced on the Peoples Gas in the focused area of investigation in proximity to the common boundary with the 3101 Site. A total of 49 soil samples were collected from the borings for laboratory analysis. The samples were analyzed for Target Compound List - volatile organic compounds (TCL-VOCs) and 19 of the samples were also analyzed for total mercury, chromium and lead. Table 4 presents a summary of the laboratory analytical results from the investigations. The residential and commercial/industrial soil remediation objectives have also been included in the tables. As previously mentioned, the locations of soil borings are presented on Figure 3. Copies of the Phase II investigation laboratory analytical reports are included in Appendix E. The presence of contaminants, other than volatile organic compounds, mercury, lead, and chromium, was not evaluated since other contaminants were not found to be of concern on the adjacent 3101 Site which formed the basis of the investigation.

Concentrations of the three metals were not found to exist above Tier 1 residential soil remediation objectives at any of the sample locations on the Peoples Gas Site. The samples analyzed for metals were obtained from the borings nearest the common property line (PG-1 through PG-9). Since no elevated metals levels were detected in these samples, the three metals were not included in the analytical suite for the remaining samples.

Based on the results of TCL-VOC analysis, soils were found to exceed one or both sets of soil remediation objectives (i.e., residential and/or industrial/commercial) at certain locations (PG-1, PG-2, PG-13, PG-15, and PG-16) on the Peoples Gas property for various chlorinated solvents, in particular, for vinyl chloride and/or tetrachloroethene (PCE). PCE was apparently used at the 3101 Site as a solvent; vinyl chloride is a naturally occurring degradation product of PCE. Other VOCs were also detected in some instances, but not above proposed residential soil remediation objectives.

8.0 REMEDIAL STRATEGY/REMEDIAL ACTION

Initially, Peoples Gas and the parties remediating the 3101 Site had agreed upon a remedial strategy for addressing the VOC soil contamination found within the focused area of investigation: excavation followed by low temperature thermal desorption. The affected area of the Peoples Gas property was in close proximity to large diameter subsurface natural gas transmission mains and

appurtenant equipment. As such, careful coordination and execution of the work was imperative in order to protect the infrastructure. Because of the depth to which soil contamination was found to exist on the Peoples Gas property, installation of steel sheet piling was required to maintain necessary lateral earth pressures against the transmission mains. Approximately 275 lineal feet of cantilevered steel sheeting was installed to an approximate depth of 40 feet below ground surface. The sheeting will remain in place. Related work included removal of chain link fencing, deactivation of a Supervisory Control and Data Acquisition (SCADA) system, and other miscellaneous tasks. Remedial activities on the Peoples Gas Site were scheduled to occur concurrent with remedial activities on the 3101 property due to the interrelated nature of planned activities, including excavation and treatment of soils from both sites along the common property line and nearby sewer work on the 3101 Site.

Following installation of the sheet piling, excavation of impacted soils commenced (August 1996). An estimated 2,340 cubic yards of soils were excavated, stockpiled within the 3101 Site building, characterized for chemical content, and, where indicated, treated on the 3101 Site via low temperature thermal desorption in accordance with Dames & Moore's December 13, 1995 Design Report. In general, soils were excavated to a depth of approximately 12.5 feet bgs. Figure 5 presents the actual depth of confirmatory soil sampling at each location along the excavation floor. This depth corresponds with the excavation depth. Confirmatory floor sampling of the excavation was conducted in accordance with the Design Report guidelines and included both VOC and total analysis for mercury, chromium, and lead. Excavation wall sampling was also conducted on the east and west ends of the excavations. However, it was not possible to collect wall samples along the southern portion of the excavation due to the presence of the steel sheet piling. The steel sheeting was installed to coincide with the southernmost row of soil borings (PG-8, PG-9, PG-10, PG-11, and PG-12) which did not indicate the presence of levels of contamination above residential soil remediation objectives based on laboratory testing of representative samples. The analytical data obtained from the soil borings represents confirmatory wall samples in this area and is presented in Table 4. Table 5 presents the results of confirmatory sampling from excavation activities; Figure 5 presents the highlights of this information graphically; Appendix F contains the excavation confirmatory sampling lab analytical reports. Some of the stockpiled soils found not to exceed Illinois EPA-approved residential soil remediation objectives, as well as soils that had been thermally treated to meet residential remediation objectives, were returned to the open excavations on the Peoples Gas property, consistent with the soil management methods prescribed in the *Design Report*.

Low temperature thermal desorption treatment activities at the 3101 Site voluntarily ceased on October 2, 1996 as a result of concerns expressed by the public and governmental authorities. At that time, approximately 92% (2,340 of 2,530 cubic yards) of the impacted soils on the Peoples Gas property had already been remediated via excavation. A portion of the excavated soils had already been thermally treated and returned to the Peoples Gas open excavations. However, soils which had been staged in the containment building awaiting thermal treatment were instead treated off site via RCRA incineration between December 1996 and February 1997. No additional impacted soils were excavated from the Peoples Gas Site following the October 2, 1996 shutdown. In late 1997, representatives of Peoples Gas and the parties remediating the 3101 Site agreed that no additional soils would be excavated and that additional soils to be used for backfilling the Peoples Gas Site excavation would be imported to the site from a quarry. Crushed aggregate meeting the Illinois Department of Transportation's material specifications for CA-6 or CA-7, commonly used in road construction as asphalt subbase, was brought to the site for use as backfill. This work was completed in October through December 1997. Site regrading, regravelling, fence restoration and other related tasks were also completed at that time.

At the request of the Illinois EPA, URS conducted groundwater modelling in accordance with the methodologies identified in the TACO regulations. The purpose of the modelling was to determine whether the residual soil contamination remaining in place after cessation of remediation activities, particularly that exceeding the Tier 1 soil component of groundwater ingestion, posed a potential risk of leaching to groundwater and either migrating outside of the focused investigation study area at concentrations exceeding applicable groundwater remediation objectives or discharging into a surface water body at concentrations exceeding water quality criteria. The results of groundwater modelling, by back-calculation, demonstrate that the residual soil contamination is several orders of magnitude lower than would be required to potentially impact surface water at applicable regulatory thresholds. The models were run assuming that the surface water body was located only 50 feet from the source. URS also conducted modelling to verify that groundwater impacts are not predicted to migrate more than one foot from the source location. The nearest surface water body is approximately 400 feet from the source, further adding to the conservative nature of the results. The results of groundwater modelling are included as Appendix G.

9.0 SPECIAL CONDITIONS

Following remedial activities and site restoration, certain portions of the focused area of site

investigation on the Peoples Gas Site remained underlain by soils with contamination above residential but below commercial/industrial soil remediation objectives. Soil samples obtained from the remainder of the focused area of site investigation met both the residential and commercial/industrial remediation criteria. Two separate focused NFR letters are sought for the limited area of site investigation. The first focused NFR letter will apply to those portions of the limited site investigation area where soils were found to meet residential remediation objectives. This NFR will not include any deed restrictions limiting future land use. Figure 6 presents a scaled Site Base Map identifying the unrestricted portions of the focused study area. The second focused NFR letter will apply to the two portions of the limited site investigation area where soils impacted with contaminants at concentrations above residential but below commercial/industrial remediation objectives is still present. This NFR will include a deed restriction limiting future land use to either commercial or industrial purposes. Figure 7 presents a scaled Site Base Map identifying the two future land use deed restricted portions of the focused study area. Legal descriptions for these two areas are as follows:

The legal description for the limited area of site investigation is as follows:

A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 224.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 409.00 feet to a point, thence south 1 degree 44 minutes 09 seconds east a distance of 15.50 feet to a point; thence south 88 degrees 15 minutes 51 seconds west a distance of 409.00 feet to a point, thence north 1 degree 44 minutes 09 seconds west a distance of 15.50 feet to the point of beginning, and containing 6,339.50 square feet, more or less.

The legal descriptions for the two small areas upon which the future industrial/commercial land use deed restriction will be imposed are as follows:

(More westerly parcel): A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal

meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 539.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 22.50 feet to a point; thence south 1 degree 44 minutes 09 seconds east a distance of 15.50 feet to a point; thence south 88 degrees 15 minutes 51 seconds west a distance of 22.50 feet to a point; thence north 1 degree 44 minutes 09 seconds west a distance of 15.50 feet to the point of beginning, and containing 348.75 square feet, more or less.

(More easterly parcel): A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 587.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 46.00 feet to a point; thence south 1 degree 44 minutes 09 seconds east a distance of 10.50 feet to a point

Owner: Artrip_Gail

Date: 2/21/02

Time: 2:44:35 PM

Job: 2

REVISED FOCUSED SITE
INVESTIGATION/
REMEDIATION OBJECTIVES/
REMEDIAL ACTION PLAN/
REMEDIAL ACTION COMPLETION
REPORT

THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION 6659 NORTH KEDZIE AVENUE CHICAGO, ILLINOIS

FOR CLARE CORPORATION AND GENERAL SEMICONDUCTOR, INC.

TABLE OF CONTENTS

		Page
EXEC	CUTIVE SUMMARY	v
1.0	INTRODUCTION	1
2.0	FACILITY BACKGROUND AND USE	1
3.0	BASIS OF INVESTIGATION	3
4.0	PEOPLES GAS SITE INVESTIGATION	4
5.0	GEOLOGY/HYDROGEOLOGY	5
6.0	APPLICABLE REMEDIATION OBJECTIVES	7
7.0	ANALYTICAL RESULTS	9
8.0	REMEDIAL STRATEGY/REMEDIAL ACTION	. 10
9.0	SPECIAL CONDITIONS	. 12
10.0	RESULTS/ENDANGERMENT ASSESSMENT	. 14
11.0	CONCLUSIONS	. 14

TABLES

TABLE 1	SUMMARY OF GEOTECHNICAL RESULTS
TABLE 2	SUMMARY OF TACO INPUT PARAMETERS
TABLE 3	SUMMARY OF POTENTIALLY APPLICABLE SOIL REMEDIATION OBJECTIVES
TABLE 4	PHASE II SITE INVESTIGATION - SOIL ANALYTICAL DATA
TABLE 5	CONFIRMATORY SOIL SAMPLING ANALYTICAL DATA
TABLE 6	CONSTRUCTION WORKER SOIL REMEDIATION OBJECTIVES

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE MAP
FIGURE 3	SOIL BORING LOCATION MAP
FIGURE 4	GEOLOGIC CROSS-SECTION
FIGURE 5	CONFIRMATORY SOIL SAMPLING MAP
FIGURE 6	FOCUSED AREA OF INVESTIGATION INCLUDING AREAS WITH NO FUTURE LAND USE RESTRICTIONS/SITE BASE MAP
FIGURE 7	FOCUSED AREA OF INVESTIGATION INCLUDING AREAS WITH INDUSTRIAL/COMMERCIAL FUTURE LAND USE RESTRICTIONS/SITE BASE MAP

APPENDICES

APPENDIX A	SOIL BORING LOGS
APPENDIX B	OFF-SITE BORING LOGS/LOCATION MAPS
APPENDIX C	GEOTECHNICAL DATA

APPENDIX D	TIER 2 SOIL REMEDIATION OBJECTIVES SPREADSHEETS
APPENDIX E	PHASE II INVESTIGATION LAB ANALYTICAL REPORTS
APPENDIX F	EXCAVATION CONFIRMATORY LAB ANALYTICAL REPORTS
APPENDIX G	GROUNDWATER MODELLING RESULTS
APPENDIX H	PROFESSIONAL ENGINEER CERTIFICATION

REVISED FOCUSED SITE INVESTIGATION REPORT/ REMEDIATION OBJECTIVES REPORT/ REMEDIAL ACTION PLAN/ REMEDIAL ACTION COMPLETION REPORT THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION CHICAGO, ILLINOIS

EXECUTIVE SUMMARY

A focused Phase II environmental site investigation was undertaken at the Peoples Gas Light and Coke Company - Rogers Park Substation facility located at 6659 North Kedzie Avenue (Cook County) in Chicago, Illinois (Peoples Gas or the Subject Site). The investigation was prompted as a result of the detection of subsurface soil contamination at the neighboring property located at 3101 West Pratt Avenue (3101 Site), at an area adjacent to the northern property boundary of the Subject Site. No groundwater contamination was found on the 3101 Site, and the Illinois Environmental Protection Agency (Illinois EPA) concurred with the finding that the soil component of the groundwater ingestion exposure pathway should be eliminated from consideration. Both of the groundwater ingestion exposure pathways are eliminated from consideration at the Peoples Gas site on the basis of reliance on the Chicago groundwater ordinance.

The 3101 Site was entered voluntarily into the Illinois EPA's Site Remediation Program. Illinois EPA assigned a site number of 0316020001 (Cook County) for the 3101 Site. An extensive investigation of the 3101 Site was conducted to determine the presence and extent of contamination. Soils contaminated with various chlorinated solvents and heavy metals (specifically mercury, chromium, and lead) were found to exist from the near surface to depths of approximately 17 feet along the western half of the south property line area on the 3101 Site. This information was provided to the Illinois EPA. In response, the Illinois EPA requested that CP Clare Corporation and General Semiconductor, Inc. (fka General Instrument Corporation), collectively the parties undertaking remediation of the 3101 Site (the Remediating Parties), contact appropriate representatives of Peoples Gas, provide pertinent analytical findings, and request permission to conduct a limited (i.e., focused) soil investigation on the Peoples Gas property in proximity to the common property line.

Multiple phases of focused soil investigation were carried out at the Peoples Gas property (January 1996; August 1996; and December 1997) for the purpose of delineating the lateral and vertical extent

of soil contamination. Two sets of proposed soil remediation objectives were developed as the basis against which to compare the resulting analytical data. The first set assumed a residential future use of the Peoples Gas property; the second set assumed a commercial/industrial future use of the Peoples Gas property. Based on the results of the investigations, soils were found to exceed one or both sets of proposed soil remediation objectives at certain locations on the Peoples Gas property for various chlorinated solvents. No mercury, chromium or lead contamination above residential or industrial/commercial soil remediation objectives was detected on the Peoples Gas property. The potential presence of contaminants, other than volatile organic compounds, mercury, lead, and chromium, was not evaluated since other contaminants were not found to be of concern on the adjacent 3101 Site which formed the basis of the investigation.

Representatives of Peoples Gas and the Remediating Parties agreed upon a remedial strategy for addressing the soil contamination on the Peoples Gas property which consisted of excavation followed by low temperature thermal desorption. Remedial activities on the Peoples Gas Site were scheduled to occur concurrent with remedial activities on the 3101 Site due to the interrelated nature of planned activities, including excavation and treatment of soils from both sites along the common property line and nearby sewer work on the 3101 Site. The affected area of the Peoples Gas property is in close proximity to large diameter subsurface natural gas transmission mains and appurtenant equipment. As such, careful coordination and execution of the work was imperative in order to protect the infrastructure. Because of the depth to which soil contamination was found to exist on the Peoples Gas property, installation of steel sheet piling was required to prevent undermining of the transmission mains. Approximately 275 lineal feet of cantilevered steel sheeting was installed to a depth of 40 feet below ground surface. The sheeting will remain in place.

Following installation of the sheet piling, excavation of impacted soils commenced. An estimated 2,340 cubic yards of soils were excavated from the Peoples Gas Site, stockpiled within the 3101 Site building (a RCRA containment building), characterized for its chemical content, and, where indicated, treated on the 3101 Site via low temperature thermal desorption in accordance with Dames & Moore's December 13, 1995 Design Report. Confirmatory excavation floor and wall samples were also collected in accordance with the approved Design Report. Stockpiled soils that were found not to exceed Illinois EPA-approved residential soil remediation objectives, as well as soils thermally treated to meet residential soil remediation objectives, were returned to the open excavations on the Peoples Gas property in accordance with the terms established by representatives of Peoples Gas and the Remediating Parties, and consistent with the prescribed soil management methods outlined in the approved Design Report.

Low temperature thermal desorption treatment activities at the 3101 Site voluntarily ceased on October 2, 1996 as a result of concerns expressed by the public and governmental authorities. At that time, approximately 92% (2,340 of 2,530 cubic yards) of the impacted soils on the Peoples Gas property had already been remediated via excavation. A portion of the excavated soils had already been thermally treated and returned to the Peoples Gas open excavations. The remaining excavated soils, which had been staged in the building at the 3101 site awaiting thermal treatment, were instead transported off site for incineration between December 1996 and February 1997. No additional impacted soils were excavated from the Peoples Gas Site following the October 2, 1996 shutdown. Following discussions between representatives of Peoples Gas and the Remediating Parties, it was agreed that no additional soils would be excavated and that soils to be used for backfilling would be imported to the Peoples Gas Site from a quarry. Crushed aggregate meeting the Illinois Department of Transportation materials specifications for CA-6 or CA-7, commonly used in road construction as asphalt subbase, was brought to the Peoples Gas Site for use as backfill. This work was completed in October through December 1997. Site regrading, regravelling, fence restoration and other related tasks were also completed at that time.

At the close of remedial activities and site restoration, certain areas within the focused area of investigation on the Peoples Gas Site remain underlain by soils with contamination above residential but below commercial/industrial soil remediation objectives. Other portions of the focused area of investigation meet applicable soil remediation criteria. As such, a deed restriction will be applied to portions of the focused area of investigation to ensure a future commercial/industrial land use. The total area of the focused site investigation occupies approximately 6,339 square feet or 0.15 acres. The two areas within the focused investigation area where an industrial/commercial deed restriction will be imposed measure 349 square feet and 483 square feet for a total of 832 square feet or 0.02 acres. Scaled drawings and legal descriptions for each of these areas are provided in this report. In addition, the drawings and legal descriptions delineate the aerial extent of the investigations carried out on the Peoples Gas property to which this report is limited. Two focused No Further Remediation letters are requested for the area investigated: one conditioned upon implementation of the future commercial/industrial land use for the two areas where contamination will remain, and one without future land use restrictions.

REVISED FOCUSED SITE INVESTIGATION REPORT/ REMEDIATION OBJECTIVES REPORT/ REMEDIAL ACTION PLAN/ REMEDIAL ACTION COMPLETION REPORT THE PEOPLES GAS LIGHT AND COKE COMPANY ROGERS PARK SUBSTATION CHICAGO, ILLINOIS

1.0 INTRODUCTION

A focused Phase II environmental site investigation was undertaken at the Peoples Gas Light and Coke Company - Rogers Park Substation facility located at 6659 North Kedzie Avenue (Cook County) in Chicago, Illinois (Peoples Gas or the Subject Site). Refer to Figure 1 for the location of the Subject Site. The investigation was prompted as a result of the detection of subsurface soil contamination at the neighboring property located at 3101 West Pratt Avenue (3101 Site), at an area adjacent to the northern property boundary of the Subject Site in proximity to the common property line. The work reported herein was conducted in accordance with the Illinois Environmental Protection Agency's (Illinois EPA's) Site Remediation Program regulations contained in Title 35 Illinois Administrative Code (35 IAC) Part 740 and with the Tiered Approach to Corrective Action Objectives (TACO) regulations contained in 35 IAC Part 742. Two focused No Further Remediation (NFR) letters are sought for a 0.15-acre strip (i.e., the focused site investigation area) along the northern boundary of the Subject Site; one based on an unrestricted future land use for portions of the study area and one based on an industrial/commercial future land use deed restriction for the balance of the study area. This report makes reference to work performed by Dames & Moore and URS Corporation. Dames & Moore is a wholly owned subsidiary of URS Corporation.

2.0 FACILITY BACKGROUND AND USE

The Peoples Gas - Rogers Park Substation occupies 16.15 acres. Most of the Peoples Gas property is occupied by grassy areas, particularly along the southern and eastern portions of the property. The Peoples Gas Site is surrounded by chain link fencing and may only be accessed through a 24-hour guarded entrance. Refer to Figure 2 for a layout of the Site. The 0.15-acre focused site investigation area is also shown on this figure.

According to Peoples Gas representatives, the facility was constructed in 1926 by Peoples Gas as a gas storage facility. The Subject Site housed a 15 million cubic foot waterless (tar-seal) gas holder

as well as an exhauster house (now the Sub Shop Building), a compressor room (now the Boiler House, Store Room, and Computer Building), and several other smaller structures. The property was expanded to Albion Avenue on the south with an additional land purchase of 6.2 acres in 1956. Gas storage at the site ceased in 1969 with the gas holder being dismantled at about that time.

The Peoples Gas Site is currently in use as a natural gas transmission station. According to Peoples Gas representatives, no change from the current land use is planned, particularly in proximity to the study area.

The Subject Site is currently used as a Sub Shop for the North District, and until recently, as a gate station. The Sub Shop building serves as a reporting location for Distribution Department and Service Department crews. Transportation Department personnel service company vehicles in the garage building. Until a few months ago, the fenced substation area (which includes the focused site investigation area near the northern property boundary where soil contamination was found and where remediation activities were carried out) contained a gate station (gas purchase point) which included meter runs, heaters, high pressure regulators, interstation main piping, and medium pressure regulators. Most of this equipment has recently been relocated to a new gate station located about a mile northwest of the Peoples Gas Site. Currently, the area within the substation fencing includes gas heaters, interstation main piping, and medium pressure regulators.

The surrounding land use is as follows: to the east and south are single family residences across Whipple Street and Albion Avenue, respectively; to the west is Kedzie Avenue, then a narrow, vacant grassy strip, then the North Shore Channel; and to the north is the 3101 Site, a currently unoccupied former manufacturing facility.

The legal description for the entire Peoples Gas - Rogers Park Substation facility¹ is as follows:

The South 14 feet of Lot 15, Lots 16 to 27 both inclusive and the North 14 feet of Lot 28, all in Salinger and Hubbards second addition to Rogers Park in the Southwest Quarter of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian.

¹The legal description for the total Peoples Gas facility is presented. However, the findings and actions reported herein apply to only a small portion of Area No. 1 (Lot 2) as further defined in the Special Conditions section of this report.

That part of the North and South alley (now vacated) lying West of North Whipple Street.

That part of North Shore Avenue (now vacated) lying West of North Whipple Street.

Lot 2 in Subdivision of West Half (by area) of Southwest Fractional Quarter of said Section 36 lying North of the Indian Boundary Line, together with the 33 feet East of and adjoining Lot 2 aforesaid, extending from the North line of said Lot 2 extended East, to the South line of said Lot 2 extended East.

That part of Lot 3 in the Subdivision of the West Half (by area) of the Southwest Fractional Quarter North of the Indian Boundary Line of said Section 36, which lies North of a line 1328.42 feet North of the South line of the Southwest Fractional Quarter of Section 36, Township 41 North, Range 13 East.

Also that part of the West Half of the Southwest Fractional Quarter of said Section 36 South of the Indian Boundary Line, lying North of the South 1328.42 feet and West of the East 505.82 feet of said West Half of the Southwest Fractional Quarter of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian, except that part of Lots 2 and 3 in Subdivision of West Half (W. ½), (in area) of Southwest Fractional Quarter (S.W. Frac. 1/4) of Section 36, Township 41 North, Range 13 East of the Third Principal Meridian, in Cook County, Illinois, lying North of the Indian Boundary Line and lying West of the following described line:

Beginning at a point on the North line of Lot 2, a distance of Forty-eight and Twenty six hundredths (48.26) feet East of the Northwest corner of said lot,

thence South in a straight line to a point on the South line of Lot 3, a distance of Sixty-two and Twenty-three hundredths (62.23) feet East of the Southwest Corner of said Lot 3.

3.0 BASIS OF INVESTIGATION

The 3101 Site, which occupies approximately 6 acres and is located directly to the north of the Subject Site, was voluntarily entered into the Illinois EPA's Site Remediation Program in 1995. Historic activities at the 3101 site consisted of the manufacture of wetted and dry reed capsules, relays, surge arresters, and other small electronic components used in electronic devices. Operations began on the 3101 Site in 1952 and ceased in the early 1990s. An extensive investigation of the 3101 Site was conducted to determine the presence and extent of contamination. Soils contaminated with various chlorinated solvents and heavy metals (specifically mercury, chromium, and lead) were found to exist from the near surface to depths of approximately 17 feet along the western half of the

south property line area on the 3101 Site². Soil contamination of the Subject Site is believed to have occurred as a result of spills and/or releases of solvents, specifically tetrachloroethene (PCE) and trichloroethene (TCE), on the ground surface south of the 3101 Site's former Butler building during the 1950s. Refer to Figure 3 for a perspective of the relative location of the various property lines and former Butler building. PCE and TCE had been historically used on the 3101 Site for parts cleaning activities. In addition to PCE and TCE, the contaminants of concern identified on the Subject Site included various daughter products, such as 1,2-dichloroethene and vinyl chloride. Because this area is flat, sheet flow across the common property line onto the Peoples Gas Site may have occurred. This information was provided to the Illinois EPA in a May 8, 1995 Dames & Moore document entitled *Site Investigation Report/Site Remediation Work Plan, CP Clare/General Instrument Corporation Site, 3101 West Pratt Avenue, Chicago, Illinois.* In response to this report, the Illinois EPA requested that the Remediating Parties make contact with appropriate representatives of Peoples Gas, provide pertinent analytical findings, and request permission to conduct a limited (i.e., focused) soil investigation on the Peoples Gas property in proximity to the common property line.

4.0 PEOPLES GAS SITE INVESTIGATION

During the period from January 1996 through December 1997, Dames & Moore conducted four separate sampling events aimed at delineating the lateral and vertical extent of soil impacts on the Peoples Gas Site in the 0.15-acre focused site investigation area shown on Figure 2. A total of 21 soil borings were advanced at various locations within the focused site investigation area in proximity to the north property line using either a geoprobe unit or hand augering. The chemicals of concern were limited to mercury, chromium, lead, and VOCs for this investigation. Refer to Figure 3 for the locations of the soil borings. Appendix A contains copies of the soil boring logs. Samples were collected using polyethylene liners within the geoprobe tool. Portions of the liner were then capped and placed on ice pending shipment to the laboratory, or were slit open along the long axis with the soil contents transferred to laboratory-provided, clean glass jars and placed on ice. Samples obtained via hand auger were likewise transferred to laboratory-provided, clean glass jars pending shipment to the lab. An additional soil volume was also subjected to headspace analysis

²Contaminated soils were also encountered at other locations on the 3101 Site, but none close to the common property boundary. As such, these other locations are not pertinent for purposes of this report. See Dames & Moore's Remedial Action Completion Report, 3101 West Pratt Avenue Site dated December 24, 1997.

using a photoionization detector (PID). Samples were selected for analysis based on visual and olfactory observations, headspace readings, and spatial position. Many of the samples were collected within the upper five feet to assess the potential for surface sheet flow followed by infiltration into the soils on the Peoples Gas Site from historic surface land releases which may have occurred on the 3101 Site. In addition, numerous samples were collected between depths of 14 and 18 feet below ground surface (bgs) to evaluate the potential for preferential migration along the existing combined sanitary and storm sewer which traverses the 3101 Site in proximity to the Peoples Gas property. The invert of the sewer occurs at a depth of approximately 15 feet bgs.

Analytical samples were kept on ice and couriered to the laboratory within 48 hours of collection. All samples were analyzed in accordance with SW-846 methologies. All drilling and sampling equipment was steam-cleaned prior to the start of the drilling program and between borings. All sampling equipment was decontaminated between sampling intervals. Decontamination consisted of an Alconox solution wash and several clean water rinses, with collection of the resulting rinsate. Most of the borings were advanced to a depth of 25 feet bgs. Soils were classified in accordance with the Unified Soil Classification System. With the exception of three borings, only silty clay and clayey silt soils, some with occasional minor amounts of sand or gravel, were encountered. Borings PG-6, PG-7 and PG-8 encountered sand lenses no more than two feet thick between 7 to 11 feet bgs. These three borings are nearest the large diameter piping within the substation, and the coarser soils represent fills associated with pipe backfill.

5.0 GEOLOGY/HYDROGEOLOGY

Soil conditions encountered during the Peoples Gas site investigation consisted of three to four inches of gravel fill overlying native silty clays or clayey silts throughout the depth drilled, typically 25 feet below ground surface (bgs). Figure 4 presents a geologic cross-section for the site. An exception to this pattern was noted in borings PG-6, PG-7, and PG-8, where clay and sand fills were encountered to depths up to 11 feet bgs. These three borings were advanced in very close proximity to Peoples Gas overhead and buried infrastructure, and represented previously disturbed soil conditions. On the adjacent 3101 Site, two soil borings (SB-3 and SB-27) were advanced to a depth of 50 feet bgs. Appendix B includes copies of the logs for these two borings and a figure which shows their location.

Except as noted above, below the upper two to three feet of fill, each boring encountered consistent

soil conditions consisting of brown to gray silty clay with a trace of fine to coarse sand and fine gravel throughout the remaining depth drilled. The silty clay units were soft for the upper 40 feet, grading to stiff to a depth of 50 feet bgs. Laboratory permeability testing was performed on four native silty clay samples obtained on the 3101 Site. A summary of this data is as follows:

Boring ID	Soil Depth Tested (ft bgs)	Measured Permeability (cm/sec)	Average Soil Permeability (cm/sec)
SB-3	9-11	2.7 x 10 ⁻⁸	
SB-27	27-28	3.7 x 10 ⁻⁸	7.85 x 10 ⁻⁸
SB-49	8-10	9.0 x 10 ⁻⁸	7.85 X 10°
SB-50	8-10	1.6 x 10 ⁻⁷	

Soil samples obtained for geotechnical analyses at these depths were believed to originate from areas that had not been impacted from historic site operations. The samples intended for geotechnical analysis were collected using Shelby tubes, and no samples for chemical analysis were available from the Shelby tubes, and no other sampling intervals from these borings were sent for chemical analysis, except for one sample obtained from boring SB-3. A soil sample from boring SB-3 at 11 to 13 feet bgs was submitted for VOC and metals analyses to verify the absence of VOCs and to obtain background information for naturally-occurring metals. The results from the SB-3 sample did not exceed residential soil remediation objectives. On a separate nearby site (approximately 2/3 miles), an underlying dolomite bedrock aquifer was encountered at an approximate depth of 80 feet bgs. Bedrock on the Subject Site is predicted to occur at similar depth. Copies of the logs for the two 50-foot borings (SB-3 and SB-27) and geotechnical borings from the 3101 Site, and the 80-foot boring (DM-1) on a nearby site are included in Appendix B. Maps depicting the locations of these borings are also included in this appendix.

As mentioned, the above geotechnical samples were obtained from soil borings advanced on the 3101 Site for the purpose of developing site-specific Tier 2 soil remediation objectives. Because of the similar nature of the soils on both sites, it is reasonable to apply the 3101 Site geotechnical data to the Peoples Gas Site as well. A summary of the geotechnical data is provided in Table 1. Copies of the original geotechnical data are included as Appendix C.

The occurrence of groundwater within the soil borings was very inconsistent. In this flat study area, the depth at which groundwater was measured ranged from 7 to 17 feet bgs to not observed throughout the total depth drilled, 25 feet. This erratic pattern, coupled with the fine-grained quality of the native soils, suggests that no true water table condition is present in the northern portion of the Peoples Gas property. Groundwater is present only in a perched condition. The silty clays and clayey silts represent an aquitard, retarding both groundwater flow and contaminant migration. No groundwater samples were collected on the Peoples Gas Site.

6.0 APPLICABLE REMEDIATION OBJECTIVES

The analytical suite chosen for the Peoples Gas Site was based on the contaminants of concern identified at the 3101 Site, the adjacent source site. These included volatile organic compounds (VOCs), chromium, lead, and mercury.

6.1 SOIL REMEDIATION OBJECTIVES

For soils, TACO assumes three possible human exposure pathways, including: 1) the inhalation of vapors or particulates emanating from contaminated soils, 2) the direct ingestion of contaminated soils, and 3) the potential for the migration of soil contamination, via leaching, into an underlying potable groundwater source (also referred to as the soil component of the groundwater ingestion pathway). With respect to the 3101 Site, the soil component of the groundwater ingestion pathway was excluded from consideration for several reasons: a massive silty clay unit was found to extend beneath the adjacent site to a depth of 50 feet, extremely low measured soil permeabilities, the absence of detected soil contamination above residential soil remediation objectives at depths greater than 13 feet below ground surface, the absence of any potentially potable aquifer within the upper fifty feet of soils, Chicago's provision of and reliance upon potable waters originating from Lake Michigan, the City of Chicago ordinance prohibiting the installation or use of drinking water wells within the city limits, and the Memorandum of Understanding executed between the City of Chicago and the Illinois EPA.

Given the proximity of the area of the Peoples Gas Site being remediated to the 3101 Site and the fact that groundwater impacts above Class II criteria were not measured in the 3101 Site monitoring wells, coupled with the soil boring logs which revealed predominantly silty clays and clayey silts on the Peoples Gas property, it follows that the soil component of the groundwater ingestion exposure

pathway should likewise be eliminated from consideration on the Peoples Gas property. Furthermore, no evidence of free product was observed during soil boring or remediation activities, and the soil saturation limit and soil attenuation capacities corresponding to various contaminants were not exceeded based on review of the analytical data. All groundwater ingestion exposure route elimination criteria set forth in 742.300, 742.305, and 742.320 are satisfied at this site. Reliance on the Chicago groundwater ordinance and MOU as institutional controls has been assumed. The proposed soil remediation objectives are based on the two remaining potential human exposure pathways: the inhalation of vapors or particulates emanating from contaminated soils, and the direct ingestion of contaminated soils.

Two sets of soil remediation objectives have been proposed for the subject Site: one set assuming a residential future use of the property, and one set assuming a commercial/industrial future land use. A combination of Tier 1/Tier 2 soil remediation objectives has been established for the Site in accordance with the Illinois EPA's TACO regulations found in 35 IAC Part 742. The proposed soil remediation objectives, assuming both potential future land use scenarios, are included in Tables 4 and 5 for ease of comparison against the analytical data obtained from the Peoples Gas Site. The chemicals for which Tier 2 soil remediation objectives were calculated are as follows:

Chemical	Tier 2 Residential	Tier 2 Industrial/Commercial
Tetrachloroethene	12 ppm³	110 ppm ³
Trichloroethene	58 ppm ³	173 ppm
Vinyl Chloride	0.3 ppm^3	0.89 ppm

Table 2 presents a summary of the TACO input parameters used to generate the Tier 2 soil remediation objectives for three VOCs. A more detailed presentation of the potentially applicable Tier 1/Tier 2 soil remediation objectives under various land use scenarios is shown on Table 3. Spreadsheets resulting from the use of an in-house computer program used to calculate the Tier 2 site-specific soil remediation objectives are provided in Appendix D. Per the request of Illinois EPA, URS performed Tier 2 calculations using each independent set of geotechnical data obtained for the

The soil remediation objective presented represents the Tier 1 soil remediation objective associated with the ingestion exposure pathway value since the Tier 2 soil inhalation remediation objective calculated was higher than the Tier 1 ingestion value.

site. We determined that use of the data from boring SB-47, 4 to 6 feet bgs, resulted in the most stringent Tier 2 values, and the values presented above are based on the use of this most conservative set of geotechnical data. Though not presented in Tables 4 and 5, construction worker soil remediation objectives were compared against site analytical data. It was verified that no concerns exist with regard to potential construction worker exposure. Table 6 presents the Tier 1 and Tier 2 construction worker soil remediation objectives used for this comparison for the chemicals of concern.

URS reviewed Appendix A, Tables E and F of the TACO regulations, which identify similar-acting noncarcinogenic and carcinogenic chemicals, respectively. According to the TACO Mixture Rule, it is not necessary to assess cumulative effects of noncarcinogens in soil under a Tier 1 assessment because of the inherent conservative nature of the Tier 1 objectives. The noncarcinogens detected in site soils identified in Table E did not require the derivation of site-specific Tier 2 soil remediation objectives because the concentrations at which they were detected were all well below the Tier 1 published values. As such, the potential cumulative effect of noncarcinogens was not assessed by URS for this site. Several of the contaminants of concern at the subject site are identified in Table F as carcinogenic, mostly affecting the liver. According to the TACO Mixture Rule, soil is exempt from the rule for carcinogens because of the allowable risk range under both Tier 1 and Tier 2 evaluations. Consequently, URS was not required to assess the potential cumulative effect for carcinogens.

6.2 GROUNDWATER REMEDIATION OBJECTIVES

No groundwater contamination above Illinois EPA's TACO Class II groundwater remediation objectives was found in any of the four groundwater monitoring wells installed and sampled on the adjacent 3101 Site. Three of the monitoring wells, designated as VMW-1, VMW-3, and MW-18, had previously been located within 50 feet of the common property line. The four groundwater wells had been installed in close proximity to some of the more contaminated soil zones on the 3101 Site, yet the samples obtained from these wells did not indicate unacceptable levels of groundwater contamination. As such, no further evaluation of impacts to groundwater was indicated on the 3101 Site. Since there was no groundwater contamination on the 3101 Site in more heavily contaminated soils, and since there is no usable or potentially potable aquifer underlying the Subject Site for significant depths, no evaluation of the potential for groundwater contamination on the Peoples Gas Site was warranted. Reliance on the Chicago groundwater ordinance and MOU has been assumed

as an institutional control for the elimination of the groundwater ingestion exposure pathway.

7.0 ANALYTICAL RESULTS

As previously mentioned, a total of 21 soil borings were advanced on the Peoples Gas in the focused area of investigation in proximity to the common boundary with the 3101 Site. A total of 49 soil samples were collected from the borings for laboratory analysis. The samples were analyzed for Target Compound List - volatile organic compounds (TCL-VOCs) and 19 of the samples were also analyzed for total mercury, chromium and lead. Table 4 presents a summary of the laboratory analytical results from the investigations. The residential and commercial/industrial soil remediation objectives have also been included in the tables. As previously mentioned, the locations of soil borings are presented on Figure 3. Copies of the Phase II investigation laboratory analytical reports are included in Appendix E. The presence of contaminants, other than volatile organic compounds, mercury, lead, and chromium, was not evaluated since other contaminants were not found to be of concern on the adjacent 3101 Site which formed the basis of the investigation.

Concentrations of the three metals were not found to exist above Tier 1 residential soil remediation objectives at any of the sample locations on the Peoples Gas Site. The samples analyzed for metals were obtained from the borings nearest the common property line (PG-1 through PG-9). Since no elevated metals levels were detected in these samples, the three metals were not included in the analytical suite for the remaining samples.

Based on the results of TCL-VOC analysis, soils were found to exceed one or both sets of soil remediation objectives (i.e., residential and/or industrial/commercial) at certain locations (PG-1, PG-2, PG-13, PG-15, and PG-16) on the Peoples Gas property for various chlorinated solvents, in particular, for vinyl chloride and/or tetrachloroethene (PCE). PCE was apparently used at the 3101 Site as a solvent; vinyl chloride is a naturally occurring degradation product of PCE. Other VOCs were also detected in some instances, but not above proposed residential soil remediation objectives.

8.0 REMEDIAL STRATEGY/REMEDIAL ACTION

Initially, Peoples Gas and the parties remediating the 3101 Site had agreed upon a remedial strategy for addressing the VOC soil contamination found within the focused area of investigation: excavation followed by low temperature thermal desorption. The affected area of the Peoples Gas property was in close proximity to large diameter subsurface natural gas transmission mains and

appurtenant equipment. As such, careful coordination and execution of the work was imperative in order to protect the infrastructure. Because of the depth to which soil contamination was found to exist on the Peoples Gas property, installation of steel sheet piling was required to maintain necessary lateral earth pressures against the transmission mains. Approximately 275 lineal feet of cantilevered steel sheeting was installed to an approximate depth of 40 feet below ground surface. The sheeting will remain in place. Related work included removal of chain link fencing, deactivation of a Supervisory Control and Data Acquisition (SCADA) system, and other miscellaneous tasks. Remedial activities on the Peoples Gas Site were scheduled to occur concurrent with remedial activities on the 3101 property due to the interrelated nature of planned activities, including excavation and treatment of soils from both sites along the common property line and nearby sewer work on the 3101 Site.

Following installation of the sheet piling, excavation of impacted soils commenced (August 1996). An estimated 2,340 cubic yards of soils were excavated, stockpiled within the 3101 Site building, characterized for chemical content, and, where indicated, treated on the 3101 Site via low temperature thermal desorption in accordance with Dames & Moore's December 13, 1995 Design Report. In general, soils were excavated to a depth of approximately 12.5 feet bgs. Figure 5 presents the actual depth of confirmatory soil sampling at each location along the excavation floor. This depth corresponds with the excavation depth. Confirmatory floor sampling of the excavation was conducted in accordance with the Design Report guidelines and included both VOC and total analysis for mercury, chromium, and lead. Excavation wall sampling was also conducted on the east and west ends of the excavations. However, it was not possible to collect wall samples along the southern portion of the excavation due to the presence of the steel sheet piling. The steel sheeting was installed to coincide with the southernmost row of soil borings (PG-8, PG-9, PG-10, PG-11, and PG-12) which did not indicate the presence of levels of contamination above residential soil remediation objectives based on laboratory testing of representative samples. The analytical data obtained from the soil borings represents confirmatory wall samples in this area and is presented in Table 4. Table 5 presents the results of confirmatory sampling from excavation activities; Figure 5 presents the highlights of this information graphically; Appendix F contains the excavation confirmatory sampling lab analytical reports. Some of the stockpiled soils found not to exceed Illinois EPA-approved residential soil remediation objectives, as well as soils that had been thermally treated to meet residential remediation objectives, were returned to the open excavations on the Peoples Gas property, consistent with the soil management methods prescribed in the *Design Report*.

Low temperature thermal desorption treatment activities at the 3101 Site voluntarily ceased on October 2, 1996 as a result of concerns expressed by the public and governmental authorities. At that time, approximately 92% (2,340 of 2,530 cubic yards) of the impacted soils on the Peoples Gas property had already been remediated via excavation. A portion of the excavated soils had already been thermally treated and returned to the Peoples Gas open excavations. However, soils which had been staged in the containment building awaiting thermal treatment were instead treated off site via RCRA incineration between December 1996 and February 1997. No additional impacted soils were excavated from the Peoples Gas Site following the October 2, 1996 shutdown. In late 1997, representatives of Peoples Gas and the parties remediating the 3101 Site agreed that no additional soils would be excavated and that additional soils to be used for backfilling the Peoples Gas Site excavation would be imported to the site from a quarry. Crushed aggregate meeting the Illinois Department of Transportation's material specifications for CA-6 or CA-7, commonly used in road construction as asphalt subbase, was brought to the site for use as backfill. This work was completed in October through December 1997. Site regrading, regravelling, fence restoration and other related tasks were also completed at that time.

At the request of the Illinois EPA, URS conducted groundwater modelling in accordance with the methodologies identified in the TACO regulations. The purpose of the modelling was to determine whether the residual soil contamination remaining in place after cessation of remediation activities, particularly that exceeding the Tier 1 soil component of groundwater ingestion, posed a potential risk of leaching to groundwater and either migrating outside of the focused investigation study area at concentrations exceeding applicable groundwater remediation objectives or discharging into a surface water body at concentrations exceeding water quality criteria. The results of groundwater modelling, by back-calculation, demonstrate that the residual soil contamination is several orders of magnitude lower than would be required to potentially impact surface water at applicable regulatory thresholds. The models were run assuming that the surface water body was located only 50 feet from the source. URS also conducted modelling to verify that groundwater impacts are not predicted to migrate more than one foot from the source location. The nearest surface water body is approximately 400 feet from the source, further adding to the conservative nature of the results. The results of groundwater modelling are included as Appendix G.

9.0 SPECIAL CONDITIONS

Following remedial activities and site restoration, certain portions of the focused area of site

investigation on the Peoples Gas Site remained underlain by soils with contamination above residential but below commercial/industrial soil remediation objectives. Soil samples obtained from the remainder of the focused area of site investigation met both the residential and commercial/industrial remediation criteria. Two separate focused NFR letters are sought for the limited area of site investigation. The first focused NFR letter will apply to those portions of the limited site investigation area where soils were found to meet residential remediation objectives. This NFR will not include any deed restrictions limiting future land use. Figure 6 presents a scaled Site Base Map identifying the unrestricted portions of the focused study area. The second focused NFR letter will apply to the two portions of the limited site investigation area where soils impacted with contaminants at concentrations above residential but below commercial/industrial remediation objectives is still present. This NFR will include a deed restriction limiting future land use to either commercial or industrial purposes. Figure 7 presents a scaled Site Base Map identifying the two future land use deed restricted portions of the focused study area. Legal descriptions for these two areas are as follows:

The legal description for the limited area of site investigation is as follows:

A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 224.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 409.00 feet to a point, thence south 1 degree 44 minutes 09 seconds east a distance of 15.50 feet to a point; thence south 88 degrees 15 minutes 51 seconds west a distance of 409.00 feet to a point, thence north 1 degree 44 minutes 09 seconds west a distance of 15.50 feet to the point of beginning, and containing 6,339.50 square feet, more or less.

The legal descriptions for the two small areas upon which the future industrial/commercial land use deed restriction will be imposed are as follows:

(More westerly parcel): A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal

meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 539.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 22.50 feet to a point; thence south 1 degree 44 minutes 09 seconds east a distance of 15.50 feet to a point; thence south 88 degrees 15 minutes 51 seconds west a distance of 22.50 feet to a point; thence north 1 degree 44 minutes 09 seconds west a distance of 15.50 feet to the point of beginning, and containing 348.75 square feet, more or less.

(More easterly parcel): A part of Lot 2 in the subdivision of the West ½ of Lot 1 of the subdivision of the southwest 1/4 of Section 36, Township 41 North, Range 13 East of the third principal meridian, recorded March 27, 1872, in Book 1, Page 60, in the Recorder's Office of Cook County, Illinois, described as follows: commencing at the northwest corner of said Lot 2; thence north 88 degrees 15 minutes 51 seconds east along the north line of said Lot 2 and parallel with the north line of said southwest 1/4 of Section 36-41-13, a distance of 587.50 feet to the point of beginning of the tract herein described; thence continuing north 88 degrees 15 minutes 51 seconds east along said north line a distance of 46.00 feet to a point; thence south 1 degree 44 minutes 09 seconds east a distance of 10.50 feet to a point; thence south 88 degrees 15 minutes 51 seconds west a distance of 46.00 feet to a point; thence north 1 degree 44 minutes 09 seconds west a distance of 10.50 feet to the point of beginning, and containing 483.00 square feet, more or less.

10.0 RESULTS/ENDANGERMENT ASSESSMENT

As previously mentioned, an estimated 2,340 of 2,530 cubic yards of VOC-impacted soils were remediated from the 0.15-acre focused area of investigation on the Peoples Gas property via excavation to achieve proposed residential soil remediation objectives. The results of confirmatory soil sampling, coupled with the investigation data, validate this finding. Of the remaining areas which were not remediated, representative analytical data indicate that certain VOCs (primarily vinyl chloride) are present above proposed residential but below commercial/industrial soil remediation objectives. The VOCs which remain in the soil potentially pose only a soil ingestion risk. The measured soil concentrations in the remaining impacted soils are below corresponding soil inhalation remediation objectives, regardless of future land use. Data from the remaining impacted soils were compared against construction worker-based soil remediation objectives (Tier 1/Tier 2) and were

found to be below these objectives. The risk to humans, particularly children, of consumption of the impacted soils is extremely low because of the presence of security guards, heavy duty chain link fencing, and deed restrictions which limit the future land use to industrial or commercial purposes. In addition, these areas are relatively small, occupying less than 750 square feet. Because the more heavily impacted soils have been removed and due to the clayey nature of the on-site soils, it is anticipated that the remaining residual contamination will not migrate and will continue the process of natural attenuation to nonhazardous chemicals. In fact, the results of groundwater modelling strongly support this conclusion.

11.0 CONCLUSIONS

The investigation and remedial effort have been executed in conformance with the Site Remediation Program and TACO regulations found in 35 IAC Parts 740 and 742, respectively. Two focused No Further Remediation letters are requested for the limited site investigation area and for the contaminants studied (mercury, chromium, lead, and VOCs): one without a future land use deed restriction for the balance of the study area found to meet residential remediation criteria, and one that will include a future commercial/industrial land use restriction to apply to two small areas where residential remediation objectives were not met. Site Base Maps for each of the requested NFR letters are represented by Figures 6 and 7. The Professional Engineer's certification is included as Appendix H.

REFERENCES

- 1) Site Investigation Report/Site Remediation Work Plan, CP Clare/General Instrument Corporation Site, 3101 West Pratt Avenue, Chicago, Illinois, Dames & Moore, Inc., May 8, 1995
- 2) Design Report, 0316020001 -- Cook County, 3101 West Pratt Avenue Site, Chicago, Illinois, Dames & Moore, Inc., December 13, 1995
- 3) Site Remediation Work Plan, 3101 West Pratt Avenue Site, Chicago, Illinois, Dames & Moore, Inc., October 13, 1997

Table 1
Geotechnical Summary Table
Peoples Gas Site
Rogers Park Substation
Chicago, Illinois

Geotechnical Parameter/Boring ID	SB-3 8-10'	SB-27 27-28'	SB-47 2-4'	SB-47 4-6'	SB-47 8-10'	SB-48 4-6'	SB-48 6-8'	SB-49 2-4'	SB-49 4-6'	SB-49 6-8'	SB-49 8-10'	SB-50 2-4'	SB-50 6-8'	SB-50 8-10'	Avg. Value
Specific Gravity (gm/cc)	1.80	2.79	na	2.89	na	na	2.83	na	2.76	na	2.73	2.81	na	2.80	2.80
Moisture Content (%)	27.1	21.0	na	25.2	na	na	26.6	na	25.5	na	12.9	25.6	na	27.4	23.9
Dry Density (gm/cc)	1.55	1.76	na	1.67	na	na	1.63	na	1.63	na	1.89	1.67	na	1.59	1.675
Permeability (cm/sec)	2.72 x 10 ⁻⁸	3.67 x 10 ⁻⁸	na	na	na	na	na	na	na	na	9.01 x 10 ⁻⁸	na	na	1.62 x 10 ⁻⁷	7.9 x 10 ⁻⁸
Fraction Organic Carbon	0.0171	0.02925	0.0145	na	0.0414	>0.06	na	0.0241	na	0.0387	na	na	>0.06	na	0.036543
Soil Classification	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay	silty clay

Note: The site-specific geotechnical values obtained from SB-27, 27-28' were not used in calculating average values for those TACO input parameters needed to derive a Tier 2 soil inhalation remediation objective. This was done deliberately because this sample depth was deemed inappropriate for inclusion in assessing risk to human health by the inhalation exposure pathway.

Table 2 TACO Input Variables Peoples Gas Property Rogers Park Substation Chicago, Illinois

Symbol	Parameter	Unit	Source	Value Used
TR	Target Cancer Risk	unitless		1 x 10 ⁶
AT _c	Averaging Time for Carcinogens	years	SSL	70
URF	Inhalation Unit Risk Factor	(ug/m³) ⁻¹	IEPA (IRIS/HEAST)	8.4 x 10 ⁻⁵ vinyl chloride 5.8 x 10 ⁻⁷ PCE 1.74 x 10 ⁻⁶ TCE
EF	Exposure Frequency	d/yr		350 residential 30 construction worker 250 industrial/commercial
ED	Exposure Duration	years		30 residential 1 construction worker 25 industrial/commercial
Q/C	Inverse of the mean concentration at the center of a square source	(g/m²-s)/(kg/m³)	Appendix C, Table H	68.81 residential 85.81 construction worker 85.81 industrial/commercial
Т	Exposure Interval	S		9.5 x 10 ⁸ residential 3.6 x 10 ⁶ construction worker 7.9 x 10 ⁸ industrial/commercial
D _i	Diffusivity in Air	cm²/s	Appendix C, Table E	0.106 vinyl chloride 0.072 PCE 0.079 TCE
w	Soil Moisture Content	%	site-specific, See Table 1	0.239
dry soil bulk density	Dry Soil Bulk Density	g/cm³	site-specific, See Table 1	1.675
soil particle density	Soil Particle Density	g/cm³	site-specific, See Table 1	2.8
Н	Henry's Law Constant	unitless	Appendix C, Table E	1.11 vinyl chloride 0.754 PCE 0.422 TCE

Table 2 con'd TACO Input Variables Peoples Gas Property Rogers Park Substation Chicago, Illinois

Symbol	Parameter	Unit	Source	Value Used
K _{oc}	Organic Carbon Partition Coefficient	cm³/g	Appendix C, Table E	18.6 vinyl chloride 155 PCE 166 TCE
f_{oc}	Fraction Organic Carbon	g/g	site-specific, See Table 1	0.036543
S	Solubility in Water	mg/L	Appendix C, Table E	1760 vinyl chloride 200 PCE 1100 TCE
D _w	Diffusivity in Water	cm²/s	Appendix C, Table E	1.23 x 10 ⁻⁶ vinyl chloride 8.2 x 10 ⁻⁶ PCE 9.1 x 10 ⁻⁶ TCE
I	Infiltration Rate	m/yr	SSL	0.3
K,	Saturated Hydraulic Conductivity	m/yr	Appendix C, Table K	5
1/(2b+3)	Exponential in Equation S20	unitless	Appendix C, Table K	0.039

Table 3
Summary of Potentially Applicable Soil Remediation Objectives
Peoples Gas - Rogers Park Substation Site
Chicago, Illinois

Contaminants/Values					Constructio	n Worker Soi	l Objectives	Industrial/Commercial Soil Objectives			
in ppm	Tier 1 Soil Ingestion	Tier 1 Soil Inhalation	Tier 2 Soil Inhalation	Applicable Value	Tier 1 Soil Tier 1 Soil Tier 2 Soil Inhalation			Tier 1 Soil Ingestion	Tier 1 Soil Inhalation	Tier 2 Soil Inhalation	Applicable Value
Tetrachloroethene	12	11	213	12	2,400	28	498¹	110	20	407	110
Trichloroethene	58	5	90	58	1,200	12	243	520	8.9	173	173
Vinyl Chloride	0.3	0.03	0.48	0.3	65	0.08	1.28	3	0.06	0.89	0.89

Value presented represents the site-specific soil saturation limit for this compound since the Tier 2 site-specific soil inhalation value is higher than the saturation limit.

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial /Industrial Soil Cleanup Objective	PG 1 8-10'	PG 1 18-20'	PG 2 3.5-4.5'	PG 2 10-12	PG 2 14-16'	PG 3 10-12'	PG 3 14-16'	PG 3 23-25'	PG 4 14-16'	PG 5 10-12'
Target Compound List - Vo	latile Organic C	Compounds in m	g/kg (ppm)	(USEPA N	1ethod 824	0)		· · · · · ·		·		·
Acetone	7,800	100,000	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdī	bdl	bdl
Benzene	0.8	1.5	bdl	bdl	0.123	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Bromodichloromethane	10	92	bdl	bdl	bdl	bdl	bdi	bdl	bdl	bdl	bdl	bdl
Bromoform	53	100	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Bromomethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
2-Butanone			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Carbon Disulfide	720	. 9	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Carbon Tetrachloride	0.3	0.640	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chlorobenzene	130	1.3	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chlorodibromomethane	1,300	1,300	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chloroethane			bdl	bdl	bdl	bdl	bdl	bd1	bd1	bdl	bdl	bdl
Chloroform	0.3	0.540	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chloromethane		**	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1-Dichloroethane	1,300	130	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,2-Dichloroethane	0.4	0.7	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1-Dichloroethene	700	1,500	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,2-Dichloroethene	780	1,200	1.050	bdl	bdl	0.0126	bdl	1.510	1.280	bdl	bdl	1.060
1,2-Dichloropropane	9	0.5	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
cis-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
trans-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Ethylbenzene	400	58	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
2-Hexanone	••		bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
4-Methyl-2-Pentanone		-	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Methylene Chloride	13	24	bdl	bdl	bd!	bdl	bdl	bdl	bdl	bdl	- bdl	bdl
Styrene	1,500	430	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1,2,2-Tetrachloroethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Tetrachloroethene	12¹	110¹	bdl	bdl	bdl	bdl	bdl	0.2	bdl	bdl	bdl	bdl
Toluene	650	42	bdl	bdl	2.44	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1,1-Trichloroethane	1,200	1,200	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl

Site-specific Tier 2 value presented.

ARTRIP-I\CPCLARE\PEOPLES\PGINVRE TBL

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial /Industrial Soil Cleanup Objective	PG t 8-10'	PG 1 18-20'	PG 2 3.5-4.5'	PG 2 10-12'	PG 2 14-16'	PG 3 10-12'	PG 3 14-16'	PG 3 23-25'	PG 4 14-16'	PG 5 10-12'
Target Compound List - Vol	atile Organic C	ompounds in m	g/kg (ppm) (USEPA M	lethod 8240	0)		,		,		
1,1,2-Trichloroethane	310	1,800	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Trichloroethene	581	173 ¹	bdl	bdl	bdl	bdl	bdl	55.4	39.1	bdl	bdl	bdl
Vinyl Acetate	1000	10	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Vinyl Chloride	0.31	0.89¹	1.07	bdl	49.5	0.694	bdl	bdl	bdl	bdl	bdl	0.297
Xylenes	410	410	bdl	bdl	0.221	bdl						
Total Metal Concentrations i	n mg/kg (ppm)	USEPA Method	ls 6010A an	d 7470								
Chromium	270	420	21.2	17.5	22.2	18.9	20.6	22.1	21.6	22.2	19.4	18.6
Lead	400	400	15.5	15.2	15.3	15.8	14.0	15.2	15.7	14.2	14.0	14.7
Mercury	10	61	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl

Sample Location/Depth	Residentia I Soil Cleanup Objective	Commercial /Industrial Soil Cleanup Objective	PG 5 18-20'	PG 6 9-11'	PG 6 13-15'	PG 7 7-9'	PG 7 13-15	PG 8 11-13'	PG 8 18-20'	PG 9 11-13'	PG 9 23-25
Target Compound List - Vol	atile Organic (Compounds in n	ng/kg (ppn) (USEPA	Method	8240)	,				- · · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	310	1,800	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Trichloroethene	58¹	173¹	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Vinyl Acetate	1000_	10	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Vinyl Chloride	0.31	0.891	bdl	bdl	0.0755	bdl	bdl	bdl	bdl	bdl	bdl
Xylenes	410	410	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Total Metal Concentrations i	n mg/kg (ppm) USEPA Metho	ds 6010A :	and 7470							
Chromium	270	420	15.4	20.7	19.9	18.5	18.6	19.1	17.6	18.6	9.6
Lead	400	400	14.3	15.3	13.4	14.7	13.6	14.4	12.9	13.7	7.7
Mercury	10	61	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 10 1-3'	PG 10 3-5'	PG 10 9-11'	PG 11 1-3'	PG 11 3-5'	PG 11 7-9*	PG 11 9-11'
Target Compound List - Vol	atile Organic Co	mpounds in mg/	kg (ppm) (USEPA M	ethod 8240	}	1	1	1
Acetone	7,800	100,000	bdl	bdl	bdl	0.1	bdl	bdl	bdl
Benzene	0.8	1.5	bdl	bdl	bdl	bdl	0.0068	bdl	0.0052
Bromodichloromethane	10	92	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Bromoform	53	100	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Bromomethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl
2-Butanone			bdl	bdl	bdl	0.0174	bdl	bdl	bdl
Carbon Disulfide	720	9	bdl	bdl	bdl	0.0058	0.0053	0.0051	bdl
Carbon Tetrachloride	0.3	0.640	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chlorobenzene	130	1.3	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chlorodibromomethane	1,300	1,300	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chloroethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl
Chloroform	0.3	0.540	bdl	0.0175	bdl	bdl	bdl	bdl	bdl
Chloromethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1-Dichloroethane	1,300	130	0.0482	0.0241	bdl	bdl	bdl	bdl	bdl
1,2-Dichloroethane	0.4	0.7	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1-Dichloroethene	700	1,500	bdl	bdl	bdl	bdl	bdl	bdl	bdl
cis-1,2-Dichloroethene	780	1,200	bdl	bdl	0.0204	0.0186	0.232	bdl	0.0325
trans-1,2-Dichloroethene	1,600	3,100	bdl	bdl	bdl	bdl	0.0302	bdl	0.0086
1,2-Dichloropropane	9	0.5	bdl	bdl	bdl	bdl	bdl	bdl	bdl
cis-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl
trans-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Ethylbenzene	400	58	bdl	bdl	bdl	bdl	bdl	bdl	bdl
2-Hexanone			bdl	bdl	bdl	bdl	bdi	bdl	bdl
4-Methyl-2-Pentanone	••		bdl	bdl	bdl	bdl	bdl	bdl	bdl
Methylene Chloride	13	24	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Styrene	1,500	430	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1,2,2-Tetrachloroethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl
Tetrachloroethene	121	110¹	bdl	0.0288	bdl	bđl	bdl	bdl	bdl
Toluene	650	42	bdl	bdl	bdl	bdl	bdl	bdl	bdl
1,1,1-Trichloroethane	1,200	1,200	0.0312	0.0133	bdl	bdl	bdl	bdl	bdl

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 10 1-3'	PG 10 3-5'	PG 10 9-11'	PG 11 1-3'	PG 11 3-5'	PG 11 7-9'	PG 11 9-11'
Target Compound List - Vol	atile Organic Co	mpounds in mg/	kg (ppm) (USEPA Me	thod 8240	}			
1,1,2-Trichloroethane	310	1,800	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Trichloroethene	58¹	173¹	bdl	0.0116	bdl	0.0084	bd!	bdl	0.0075
Vinyl Acetate	1000	10	bdl	bdl	bdl	bdl	bdl	bdi	bdl
Vinyl Chloride	0.31	0.89¹	bdl	bdl	bdl	bdl	0.141	0.0180	0.0593
Xvlenes	410	410	bdi	bdl	bdl	bdl	hdl	bdl	_bdl

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial /Industrial Soil Cleanup Objective	PG 12 9-11'	PG 12 11-13'	PG 13 3-5'	PG 13 9-11'	PG 13 11-13'	PG 13 13-15'
Target Compound List - Vo	latile Organic Co	mpounds in mg	/kg (ppm) (USEPA Met	thod 8240)	1		
Acetone	7,800	100,000	bdl	bdl	bdl	bdl	bdl	bdl
Benzene	0.8	1.5	bdl	bdl	bdl	bdl	bdl	bdl
Bromodichloromethane	10	92	bdl	bdl	bd1	bdl	bdl	bdl
Bromoform	53	100	bdl	bdl	bdl	bdl	bdl	bdl
Bromomethane			bdl	bdl	bdl	bdl	bdl	bdl
2-Butanone		••	bdl	bdl	bdi	bdl	bdi	bdl
Carbon Disulfide	720	9	0.0099	bdl	bdl	bdl	bdl	bdl
Carbon Tetrachloride	0.3	0.640	bdl	bdl	bdl	bdl	bdl	bdl
Chlorobenzene	130	1.3	bdl	bdl	bdl	bdl	bdl	bdl
Chlorodibromomethane	1,300	1,300	bdl	bdl	bdl	bdl	bdî	bdl
Chloroethane			bdl	bdl	bdl	bdl	bdl	bdl
Chloroform	0.3	0.540	bdl	bdl	bdl	bdl	bdl	bdl
Chloromethane			bdl	bdl	bdl	bdl	bdl	bdl
1,1-Dichloroethane	1,300	130	bdl	bdl	bdl	bdl	bdl	bdl
1,2-Dichloroethane	0.4	0.7	bdl	bdI	bdl	bdl	bdl	bdì
1,1-Dichloroethene	700	1,500	bdl	bdl	bdl	bdl	bdl	bdl
cis-1,2-Dichloroethene	780	1,200	0.0257	0.0294	4.23	1.65	bdl	bdl
trans-1,2-Dichloroethene	1,600	3,100	bdl	bdl	0.355	0.108	bdl	bdl
1,2-Dichloropropane	9	0.5	bdl	bdl	bdl	bdl	bdl	bdl
cis-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl
trans-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl
Ethylbenzene	400	58	bdl	bdl	bdl	bdl	bdl	bdl
2-Hexanone			bdl	bdl	bdl	bdl	bdl	bdl
4-Methyl-2-Pentanone			bdl	bdl	bdl	bdl	bdl	bdl
Methylene Chloride	13	24	bdl	bdl	bdl	bdl	bdl	bdl
Styrene	1,500	430	bdl	bdl	bdl	bdl	bdl	bdl
1,1,2,2-Tetrachloroethane			bdl	bdl	bdl	bdl	bdl	bdl
Tetrachloroethene	121	1101	bdl	bdl	24.6	41.4	bdl	0.0476
Toluene	650	42	bdl	bdl	bdl	bdl	bdl	bdl

Site-specific Tier 2 value presented. ARTRIP-1\CPCLARE\PEOPLES\PGINVRE TBL

Sample Location/Depth Target Compound List - Vol	Residential Soil Cleanup Objective	Commercial /Industrial Soil Cleanup Objective	PG 12 9-11'	PG 12 11-13'	PG 13 3-5'	PG 13 9-11'	PG 13 11-13'	PG 13 13-15'
			bdl	bdl	bdl	bdl	bdl	bdl
1,1,1-Trichloroethane	1,200	1,200	DOI	OGI	bui	Dui	bui	UQI
1,1,2-Trichloroethane	310	1,800	bdl	bdl	bdl	bdl	bdl	bdl
Trichloroethene	58¹	173¹	3.82	0.281	3.96	7.38	bdl	0.008
Vinyl Acetate	1,000	10	bdl	bdl	bdl	bdl	bdl	bdl
Vinyl Chloride	0.31	0.89 ¹	bdl	bdl	bdl	bdI	bdl	bdl
Xylenes	410	410	bdl	hdi	hd]	bdl	bdl	bdl

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 14 3'-5'	PG 14 5'-7'	PG 15 3'-5'	PG 15 5'-7'	PG 15 7'-9'	PG 16 1'-3'	PG 16 3'-5'	PG 17 2'-4'	PG 17 16'-18'		
Target Compound List - Vo	Target Compound List - Volatile Organic Compounds in mg/kg (ppm) (USEPA Method 8240)												
Acetone	7,800	100,000	bdl										
Benzene	0.8	1.5	0.0056	bdl	bdl	0.0052	bdl	0.0182	bdl	bdl	bdl		
Bromodichloromethane	10	92	bdl										
Bromoform	53	100	bdl										
Bromomethane			bdl										
2-Butanone			bdl	bdl	bdl	bdl	bdl	bd!	bdl	bdl	bdl		
Carbon Disulfide	720	9	bdl										
Carbon Tetrachloride	0.3	0.640	bdl										
Chlorobenzene	130	1.3	bdl	bd1	bdl								
Chlorodibromomethane	1,300	1,300	bdl	bd1	bdl								
Chloroethane			bdl	bd1	bdl								
Chloroform	0.3	0.540	bdl	bd1	bdl								
Chloromethane			bdl										
1,1-Dichloroethane	1,300	130	bdl	0.0184	bdl								
1,2-Dichloroethane	0.4	0.7	bdl	bdl	bdi	bdl	bdi	bdl	bdl	bdl	bdi		
1,1-Dichloroethene	700	1,500	bdl	bdl	bdl	0.0149	bdl	bdl	0.0525	bdl	bdl		
cis-1,2-Dichloroethene	780	1,200	0.101	0.567	1.42	5.74	0.0516	0.0688	22.60	0.128	0.0167		
trans-1,2-Dichloroethene	1,600	3,100	0.0062	0.102	0.314	0.17	bdl	0.0246	1.81	0.0208	bdl		
1,2-Dichloropropane	9	0.5	bdl	bdl	bdi	bdl	bdl	bdl	bdl	bdl	bdl		
cis-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdi	bdl	bdl	bdl		
trans-1,3-Dichloropropene	0.1	0.23	bdl										
Ethylbenzene	400	58	bdl	bdi									
2-Hexanone			bdl	bdl	bdl	bdl	bdl	bdl	bdl -	bdl	bdl		
4-Methyl-2-Pentanone		••	bdl										
Methylene Chloride	13	24	bdl										
Styrene	1,500	430	bdl										
1,1,2,2-Tetrachloroethane			bdl										
Tetrachloroethene	121	110¹	0.0088	0.019	2.12	28.2	0.0083	0.15	2.81	bdl	bdI		
Toluene	650	42	bdl	bdl	bdl	bdl	bdl	0.0083	bdl	bdl	bdl		
1,1,1-Trichloroethane	1,200	1,200	bdl										

Site-specific Tier 2 value presented. \ARTRIP-1\CPCLARE\PEOPLES\PGINVRE.TBL

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 14 3'-5'	PG 14 5'-7'	PG 15 3'-5'	PG 15 5'-7'	PG 15 7'-9'	PG 16 1'-3'	PG 16 3'-5'	PG 17 2'-4'	PG 17 16'-18'
Target Compound List - Vol	atile Organic Co	mpounds in mg/	kg (ppm) (USEPA Me	thod 8240)		,	,		
1,1,2-Trichloroethane	310	1,800	bdl								
Trichloroethene	58¹	1731	0.0184	0.0242	1.26	9.51	0.112	0.14	2.41	0.0611	9.750
Vinyl Acetate	1000	10	bdl								
Vinyl Chloride	0.31	0.89¹	bdl	bdl	bdl	bdl	bdl	bdl	0.713	bdl	bdl
Xvlenes	410	410	bdl	bdl	hd!	.bdl	bdl	bdl	bdl	_bdl	bdi

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 18 3'-5'	PG 18 17'-19'	PG 19 3'-5'	PG 19 19'-21'	PG 20 3'-5'	PG 20 17'-19'	PG 21 3'-5'	PG 21 15'-17'			
Target Compound List - Vo	Target Compound List - Volatile Organic Compounds in mg/kg (ppm) (USEPA Method 8240)												
Acetone	7,800	100,000	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Benzene	0.8	1.5	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Bromodichloromethane	10	92	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Вготоботт	53	100	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Bromomethane			bdl	bdl	bdl	bdl	bdl	bdI	bdl	bdl			
2-Butanone			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Carbon Disulfide	720	9	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Carbon Tetrachloride	0.3	0.640	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bd1			
Chlorobenzene	130	1.3	bdl	bdl	bdl	bdl	bdl	bdi	bdl	bdl			
Chlorodibromomethane	1,300	1,300	bdl	bdl	bdi	bdl	bdl	bdl	bdl	bdl			
Chloroethane		**	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Chloroform	0.3	0.540	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Chloromethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
1,1-Dichloroethane	1,300	130	bdl	bdl	bdl	bdl	bd!	bdl	bdl	bdl			
1,2-Dichloroethane	0.4	0.7	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
1,1-Dichloroethene	700	1,500	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
cis-1,2-Dichloroethene	780	1,200	0.0557	1.150	0.121	0.0243	0.0661	bdl	bdl	bdl			
trans-1,2-Dichloroethene	1,600	3,100	0.0094	bdl	0.0219	bdl	0.0113	bdl	bdl	bdl			
1,2-Dichloropropane	9	0.5	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
cis-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
trans-1,3-Dichloropropene	0.1	0.23	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Ethylbenzene	400	58	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
2-Hexanone	•••	<u></u>	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
4-Methyl-2-Pentanone			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Methylene Chloride	13	24	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Styrene	1,500	430	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
1,1,2,2-Tetrachloroethane			bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
Tetrachloroethene	12¹	110¹	bdl	bdl	bdl	bdl	0.0295	bdl	bdl	bdl			
Toluene	650_	42	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			
1,1,1-Trichloroethane	1,200	1,200	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl			

Sample Location/Depth	Residential Soil Cleanup Objective	Commercial/ Industrial Soil Cleanup Objective	PG 18 3'-5'	PG 18 17'-19'	PG 19 3'-5'	PG 19 19'-21'	PG 20 3'-5'	PG 20 17'-19'	PG 21 3'-5'	PG 21 15'-17'
Target Compound List - Vo	latile Organic Co	mpounds in mg/	kg (ppm) (USEPA Me	thod 8240)				
1,1,2-Trichloroethane	310	1,800	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Trichloroethene	581	173¹	0.0396	11.60	0.0213	bdl	0.0461	bdl	bdl	bdl
Vinyl Acetate	1000	10	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Vinyl Chloride	0.31	0.891	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Xvienes	410	410	bdl	bdl	bdl	bdl	bdl	hdl	bdl	bdl

TABLE 5 SUMMARY OF ANALYTICAL RESULTS CONFIRMATORY SOIL SAMPLES PEOPLES GAS PROPERTY

PARAMETER	RESIDENTIAL CLEANUP OBJECTIVE	COMMERCIAL/ INDUSTRIAL CLEANUP OBJECTIVE	E019 (12.5')	E020 (12')	E021 (12')	E022 (12')	E023 (12.5')	E024 (15')	E027 (8')
TARGET COMPOUND LIST - VOI	ATILE ORGANIC COMPOUNI	OS (ppm)							
Acetone	7,800	100,000	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	0.8	1.5	BDL	BDL	0.001	0.005	BDL	0.006	BDL
Bromodichloromethane	10	92	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	130	1.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	0.3	0.540	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	700	1,500	BDL	BDL	BDL	BDL	BDL	BDL	0.005
1,2-Dichloroethene (total)	780	1,200	0.027	0.05	1.923	0.194	BDL	0.02	0.774
Ethylbenzene	400	58	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methylene Chloride	13	24	BDL	BDL	BDL	BDL	BDL	BDL	0.022
Tetrachloroethene	12*	110*	BDL	BDL	BDL	0.001	BDL	BDL	0.001
Toluene	650	42	0.019	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	1,200	1,200	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	310	1,800	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	58*	173*	0.096	0.624	0.378	0.25	BDL	BDL	0.408
Vinyl Acetate	1,000	10	BDL	BDL	0.014	BDL	BDL	BDL	BDL
Vinyl chloride	0.300*	0.89*	0.013	BDL	BDL	BDL	BDL	0.006	0.446
Xylenes (total)	410	410	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Other VOCs	-	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL METALS (ppm)							4-	<u> </u>	
Chromium	270	420	16.7	18.6	15.9	19.7	13.3	14.4	15.6
Lead	400	400	18.6	11.3	10.8	7.57	9.03	9.52	9.94
Mercury	10	61	BDL	BDL	BDL	BDL	BDL	0.0334	BDL

^{*} Tier 2 soil remediation objective calculated using site-specific geotechnical data and Tier 2 procedures presented in the 35 IAC Part 742 regulations (June 1997).

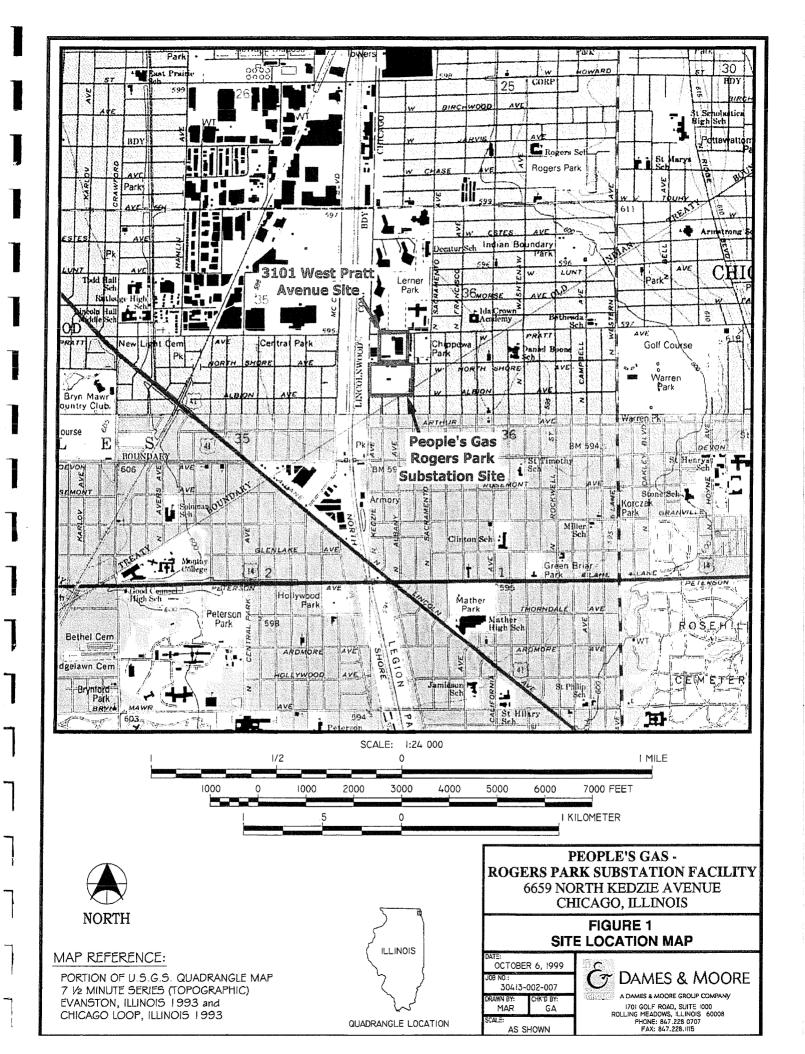
TABLE 5 con'd SUMMARY OF ANALYTICAL RESULTS CONFIRMATORY SOIL SAMPLES PEOPLES GAS PROPERTY

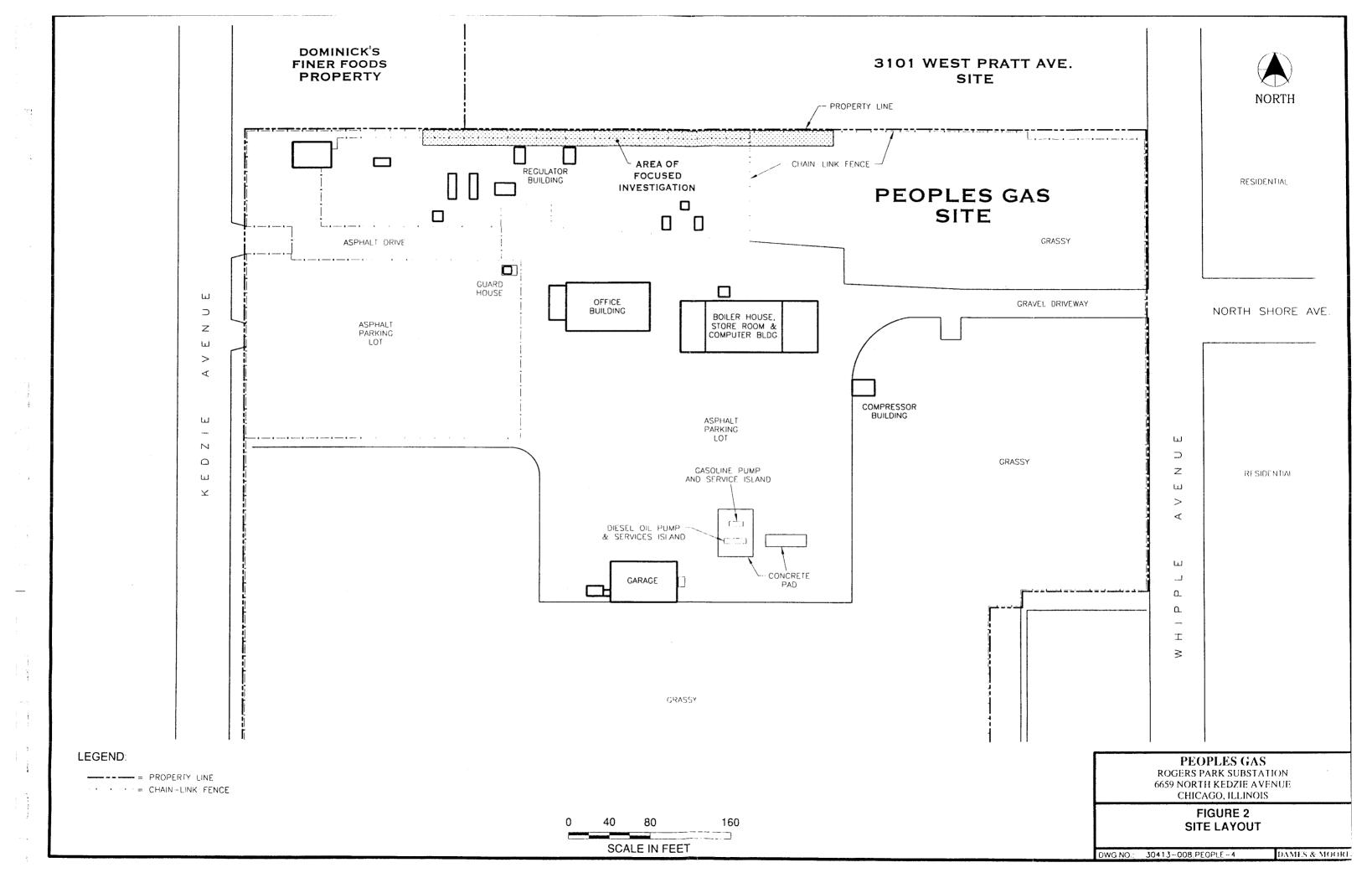
PARAMETER	RESIDENTIAL CLEANUP OBJECTIVE	COMMERCIAL/ INDUSTRIAL CLEANUP OBJECTIVE	E027A (5.5')	E028 (15')	E029 (12')	E030 (12')	E031 (12')	E032 (12')	E033 (10.5)	E034 (12')	E037 (12.5')
TARGET COMPOUND LIST - VOL	ATILE ORGANIC COMPOUND	S (ppm)									
Acetone	7,800	100,000	BDL	0.028	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	0.8	1.5	BDL	0.003	0.003	BDL	0.001	0.001	BDL	BDL	BDL
Bromodichloromethane	10	92	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	130	1.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	0.3	0.540	0.001	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	700	1,500	0.018	BDL	BDL	BDL	BDL	BDL	0.004	BDL	BDL
1,2-Dichloroethene (total)	780	1,200	3.98	0.004	0.001	0.008	0.001	BDL	0.343	0.046	BDL
Ethylbenzene	400	58	BDL	0.007	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Methylene Chloride	13	24	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachloroethene	12*	110*	0.206	0.008	BDL	0.001	BDL	0.001	BDL	BDL	BDL
Toluene	650	42	BDL	0.004	0.001	0.001	BDL	0.001	BDL	BDL	BDL
1,1,1-Trichloroethane	1,200	1,200	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	310	1,800	0.008	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	58*	173*	5.96	BDL	BDL	BDL	BDL	BDL	7.56	BDL	BDL
Vinyl Acetate	1,000	10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vinyl chloride	0.300*	0.89*	0.580	0.004	BDL	0.011	BDL	BDL	BDL	0.016	BDL
Xylenes (total)	410	410	BDL	0.019	BDL	BDL	BDL	BDL	0.003	BDL	BDL
Other VOCs	-	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL METALS (ppm)	TOTAL METALS (ppm)										
Chromium	270	420	15.0	14.9	14.1	16.4	15.2	14.0	17.6	17.1	16.5
Lead	400	400	9.52	8.26	10.9	10.0	8.16	9.28	5.98	8.40	7.05
Мегсигу	10	61	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

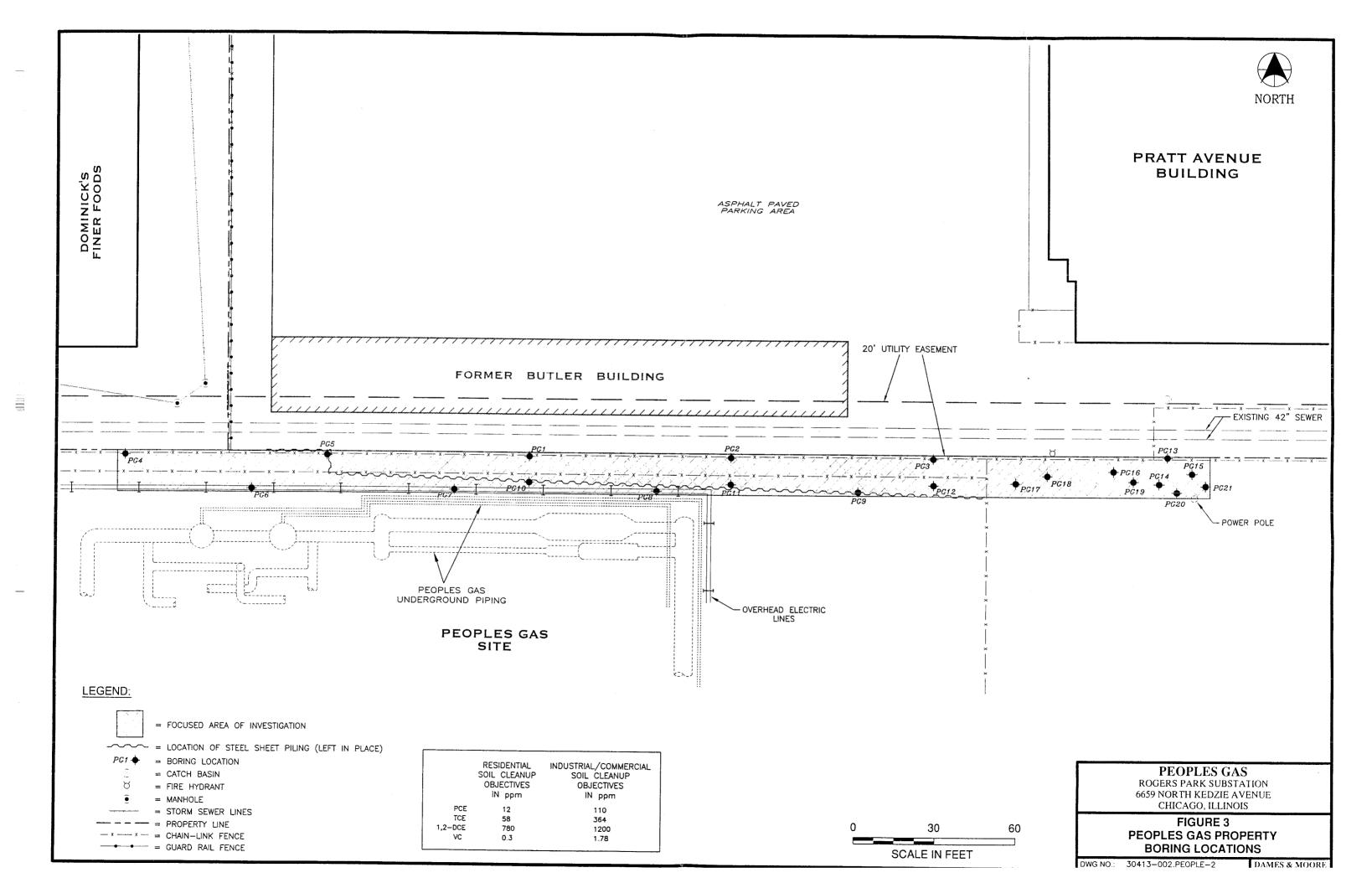
^{*} The site-specific cleanup objective calculated using geotechnical data from the site and Tier 2 procedures presented in the 35 IAC Part 742 regulations (June 1997).

TABLE 5 con'd SUMMARY OF ANALYTICAL RESULTS CONFIRMATORY SOIL SAMPLES PEOPLES GAS PROPERTY

PARAMETER	RESIDENTIAL CLEANUP OBJECTIVE	COMMERCIAL/ INDUSTRIAL CLEANUP OBJECTIVE	E038 (12)	E039 (12')	E040 (12')	E041 (11')	E042 (11.5')	E043 (11.5')	E045 (11.5')	E046 (12')	E047 (12')
TARGET COMPOUND LIST - VOL	ATILE ORGANIC COMPOU	INDS (ppm)									
Acetone	7,800	100,000	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Benzene	0.8	1.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Bromodichloromethane	10	92	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	130	1.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chloroform	0.3	0.540	BDL	0.003	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethene	700	1,500	BDL	BDL	BDL	BDL	0.008	BDL	BDL	BDL	BDL
1,2-Dichloroethene (total)	780	1,200	BDL	BDL	BDL	0.001	BDL	BDL	0.017	BDL	0.003
Ethylbenzene	400	58	BDL	BDL	BDL	BDL	0.002	BDL	BDL	BDL	BDL
Methylene Chloride	13	24	BDL	BDL	BDL	0.046	0.060	BDL	BDL	BDL	BDL
Tetrachloroethene	12*	110*	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	650	42	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	1,200	BDL	BDL	BDL	BDL	0.001	0.036	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	310	1,800	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethene	58*	364*	BDL	BDL	BDL	BDL	BDL	BDL	0.012	BDL	BDL
Vinyl Acetate	1,000	10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vinyl chloride	0.300*	1.78*	BDL	BDL	BDL	BDL	BDL	BDL	0.020	BDL	0.005
Xylenes (total)	410	410	BDL	BDL	BDL	BDL	0.006	BDL	BDL	BDL	BDL
Other VOCs	-	~	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
TOTAL METALS (ppm)	FOTAL METALS (ppm)										
Chromium	270	420	10.9	13.0	13.2	16.2	17.8	18.6	16.9	18.0	16.2
Lead	400	400	7.49	10.6	8.96	11.1	12.1	9.90	10.8	7.76	5.49
Mercury	10	61	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

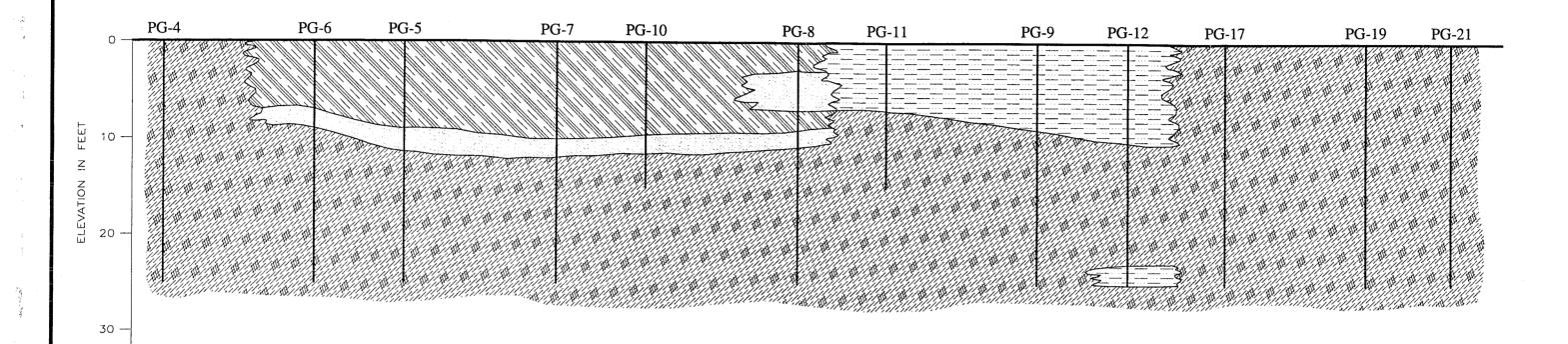

^{*} The site-specific cleanup objective calculated using geotechnical data from the site and Tier 2 procedures presented in the 35 IAC Part 742 regulations (June 1997).

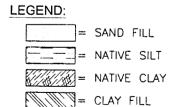

Table 6 Construction Worker Soil Remediation Objectives Peoples Gas Site Rogers Park Substation Chicago, Illinois

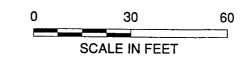

Parameter	Proposed Soil Remediation
	Objective in ppm
Acetone	100,000
Benzene	2.1
Bromodichloromethane	2,000
Bromoform	140
Bromomethane	
2-Butanone	••
Carbon disulfide	9.0
Carbon tetrachloride	0.90
Chlorobenzene	1.3
Chloroethane	••
Chloroform	0.76
Chloromethane	
1,1-Dichloroethane	130
1.2-Dichloroethane	0.99
1,1-Dichloroethene	1,500
cis-1,2-Dichloroethene	1,200
trans-1.2-Dichloroethene	3,100
1,2-Dichloropropane	0.50
cis-1,3-Dichloropropene	0.33
trans-1,3-Dichloropropene	0.33
Ethylbenzene	58
2-Hexanone	
4-Methyl-2-pentanone	
Methylene chloride	34
Styrene	430
1,1,2,2-Tetrachloroethane	
Tetrachloroethene	498¹
Toluene	42
1,1,1-Trichloroethane	1,200
1,1,2-Trichloroethane	1,800
Trichloroethene	2431
Vinyl acetate	10
Vinyl chloride	1.281
Xylenes (total)	410

Note: Soil remediation objectives presented above represent the more stringent of the soil inhalation or soil ingestion remediation objectives for the construction worker scenario.

Site-specific Tier 2 soil inhalation remediation objective.

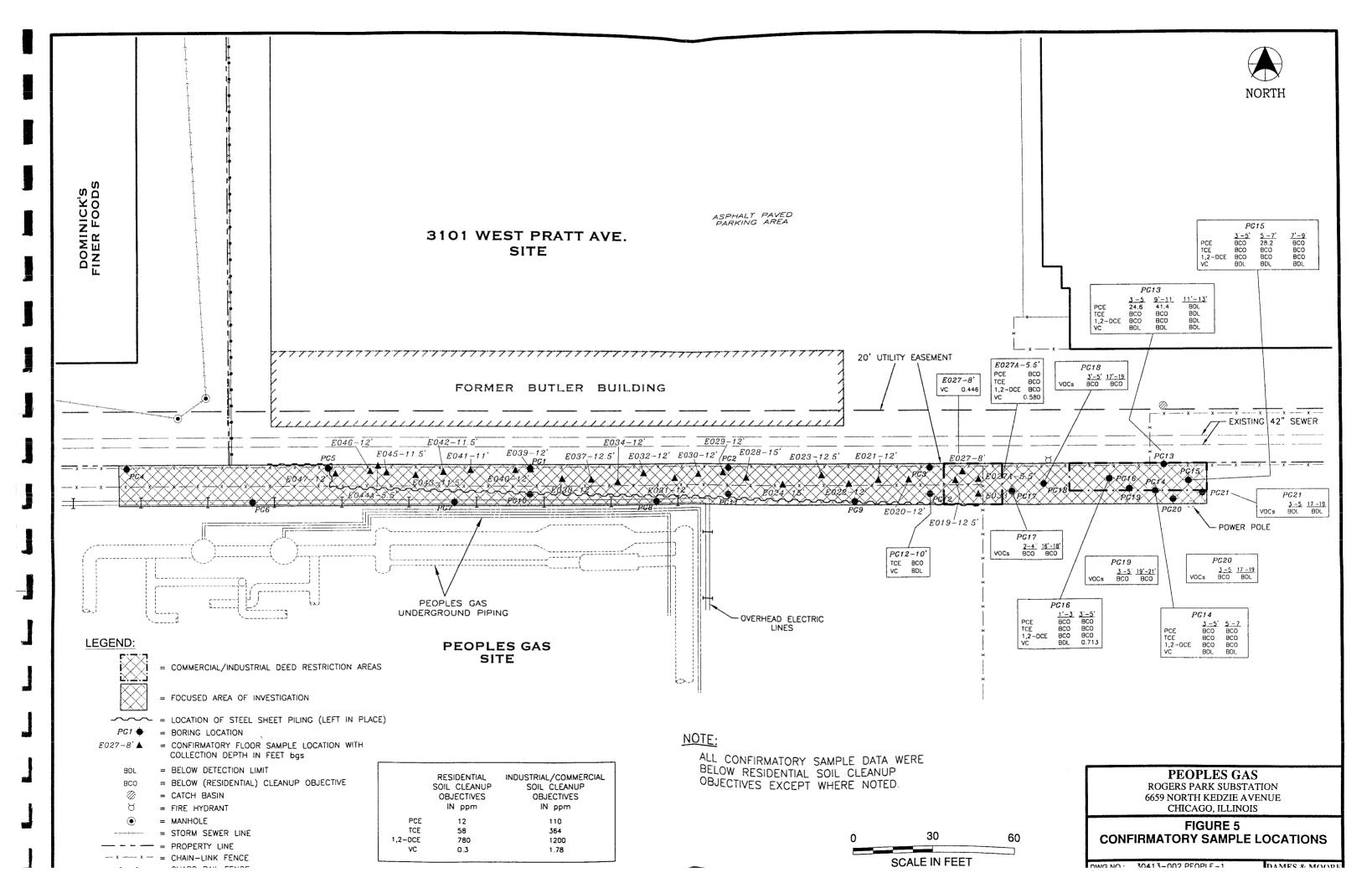


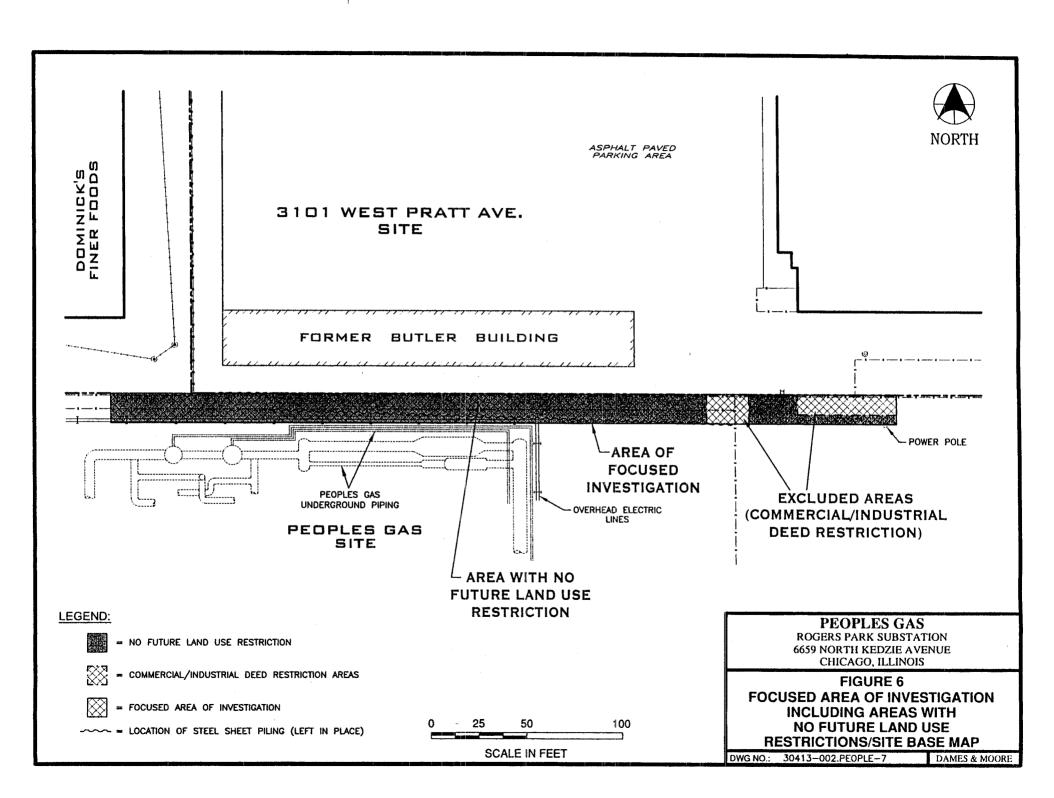


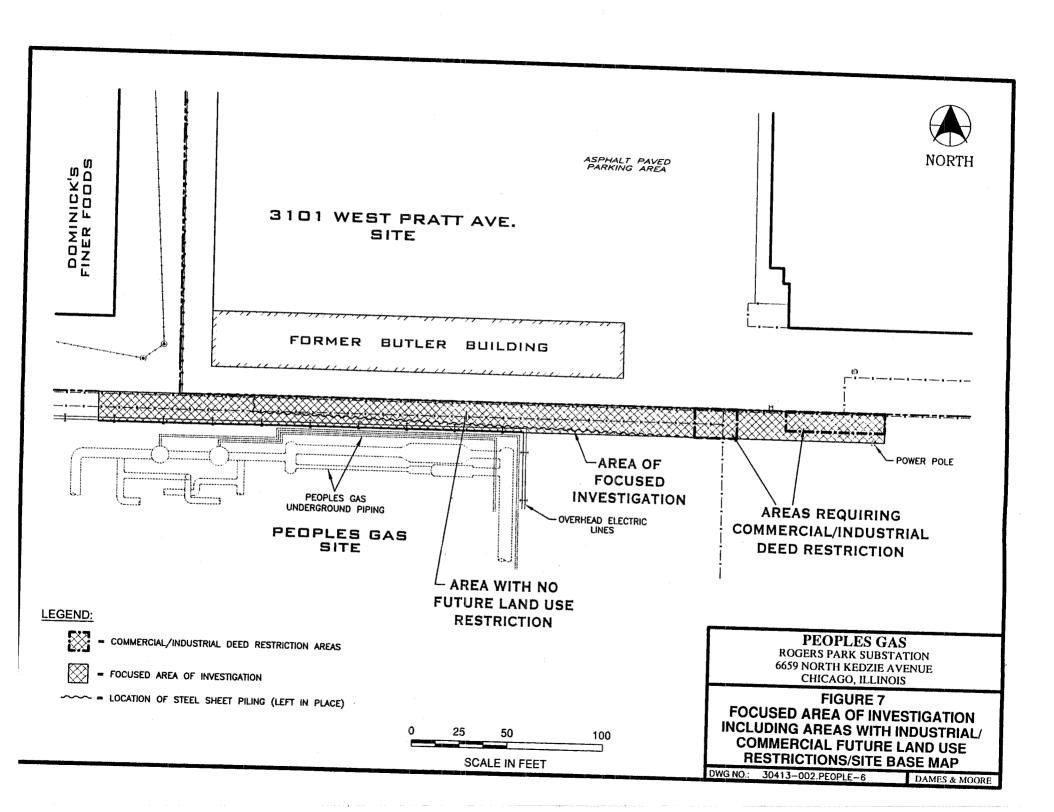


NOTE:

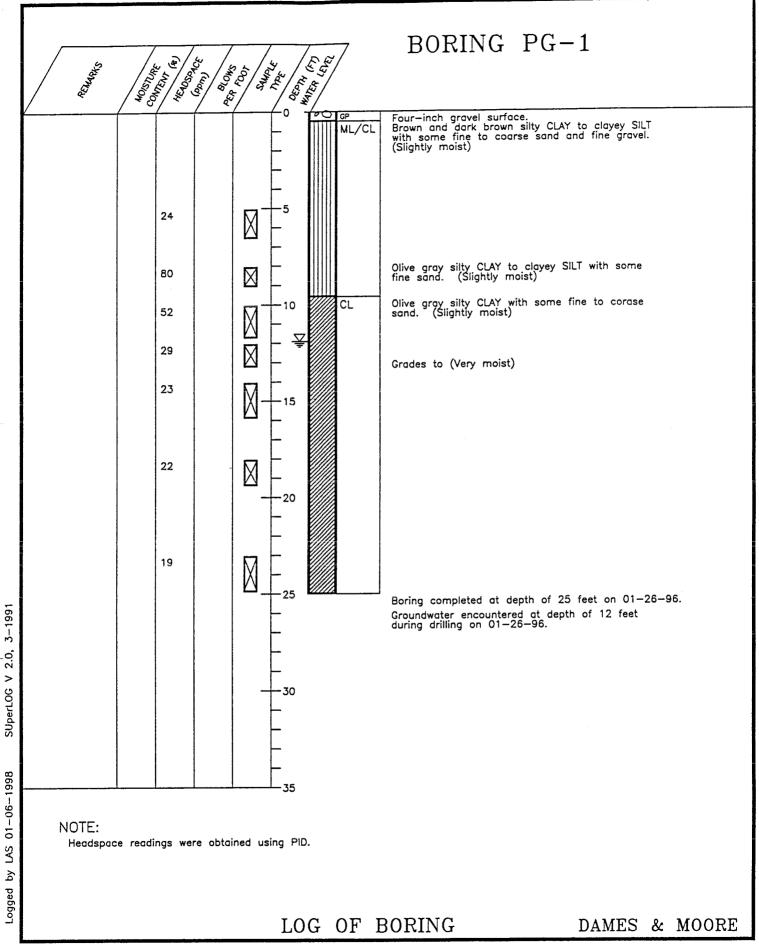
BORING LOGS FOR PG-5 AND PG-10 DID NOT INDICATE THE PRESENCE OF SAND FILLS. SAND UNIT IN THESE TWO BORINGS HAS BEEN INCLUDED ONLY TO SIMPLIFY THE CROSS-SECTION. SANDFILL IS ASSOCIATED WITH BURIED PIPING.

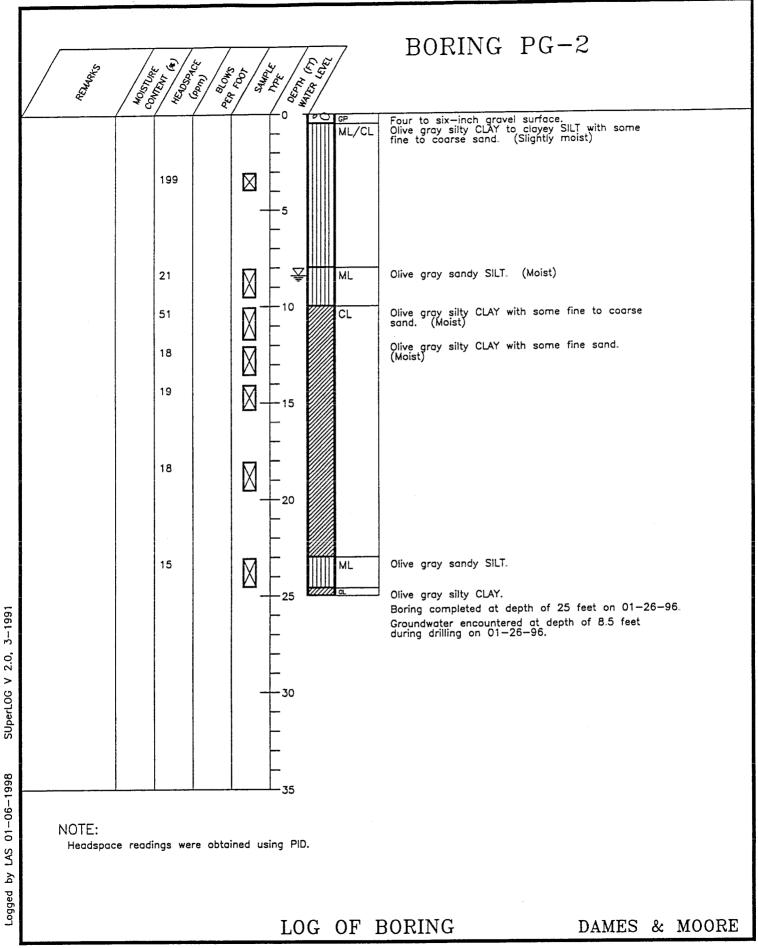


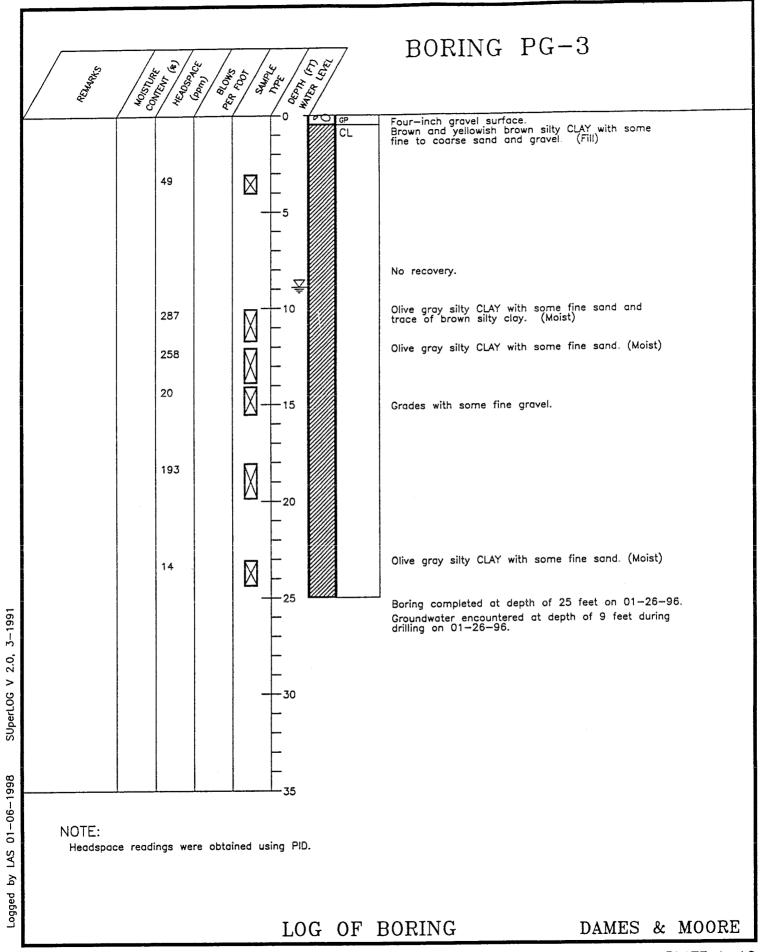

PEOPLES GAS
ROGERS PARK SUBSTATION
6659 NORTH KEDZIE AVENUE
CHICAGO, ILLINOIS

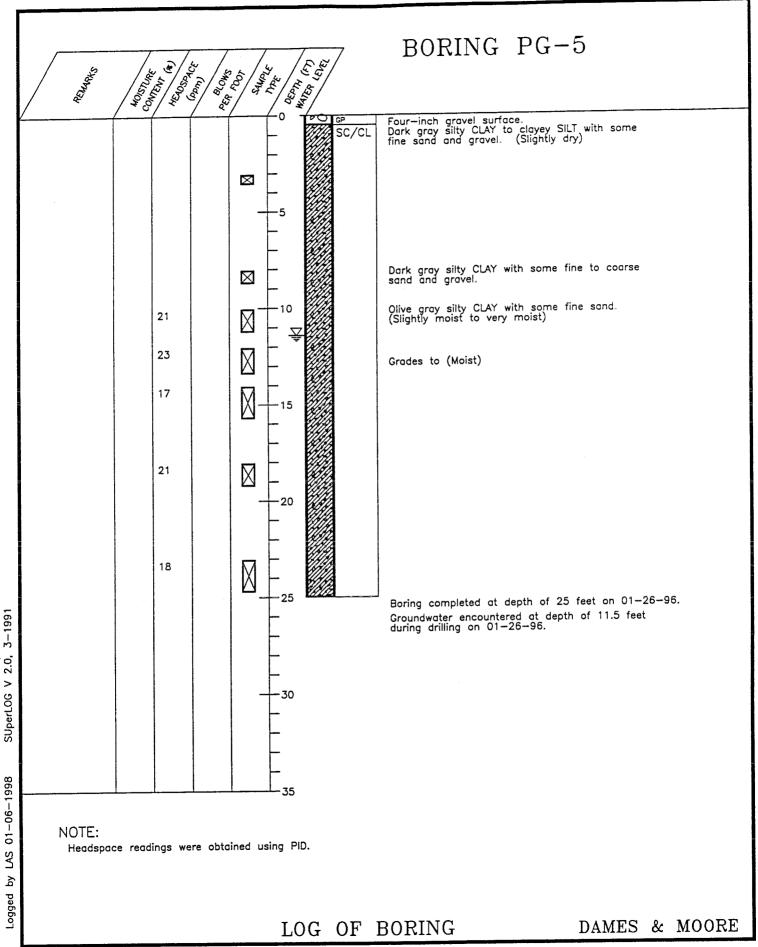

FIGURE 4
GEOLOGIC CROSS-SECTION

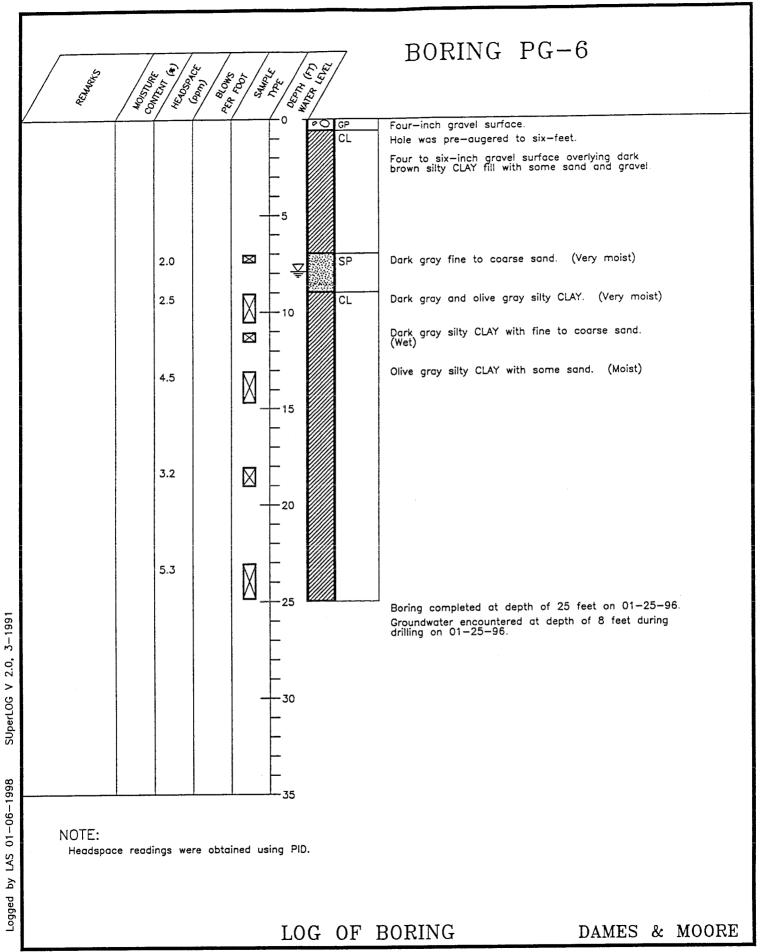
DWG NO.: 30413-002.PE0PLE-5

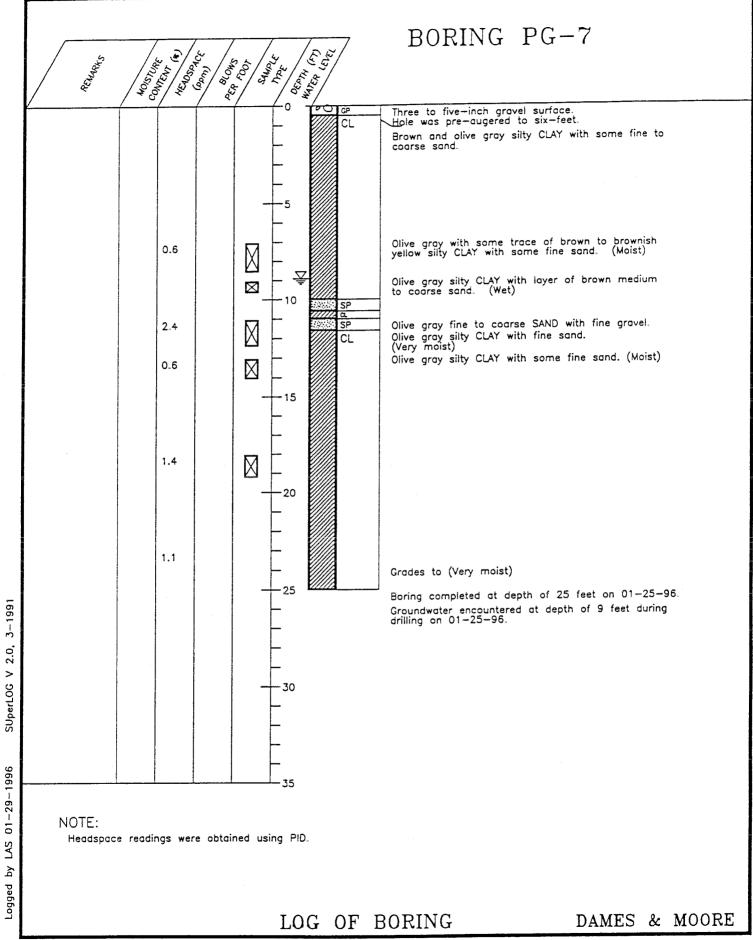

DAMES & MOORE

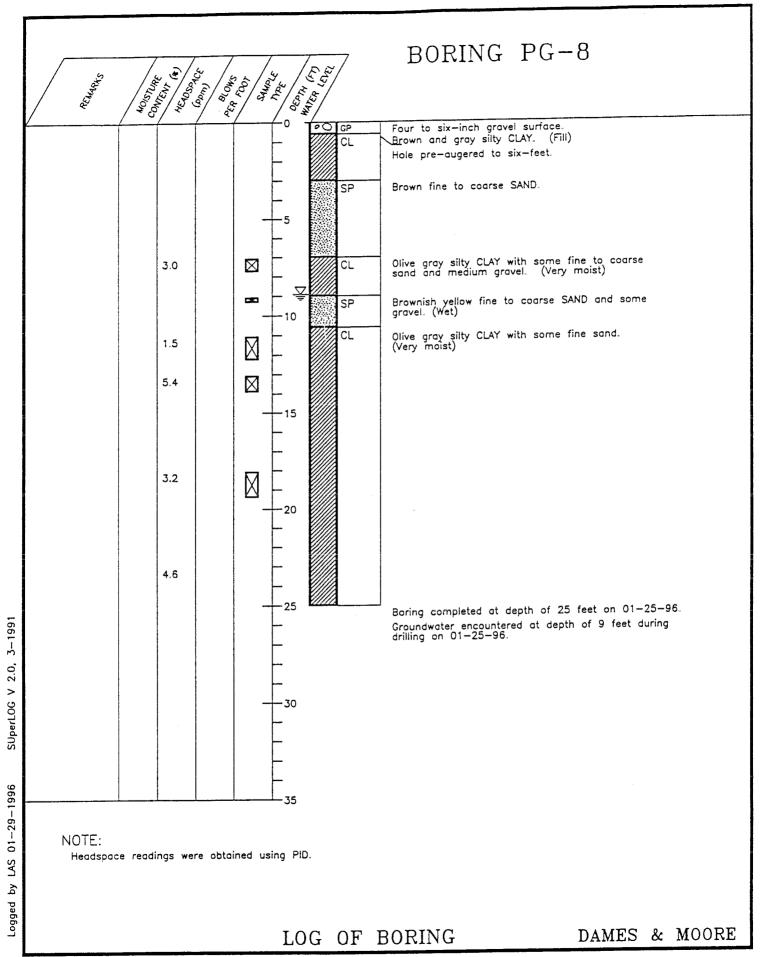


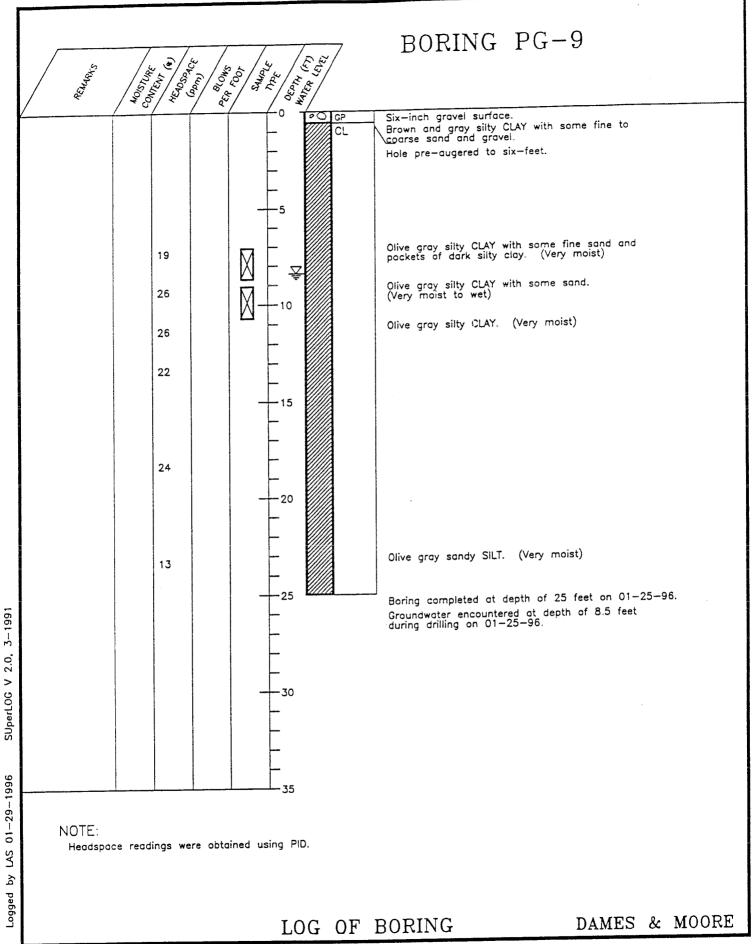


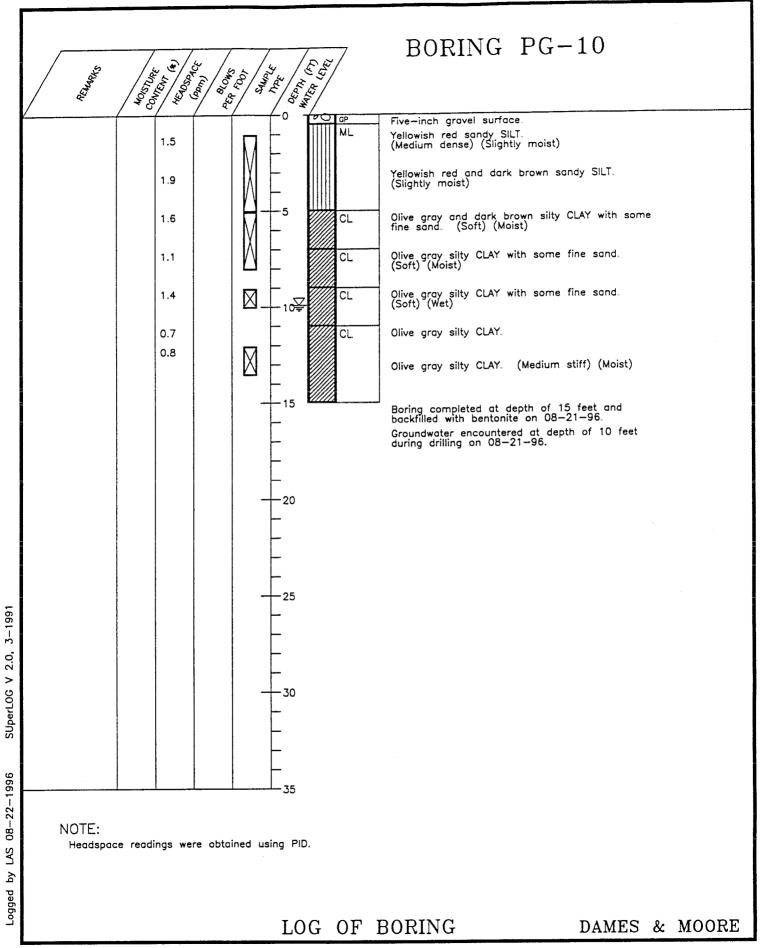


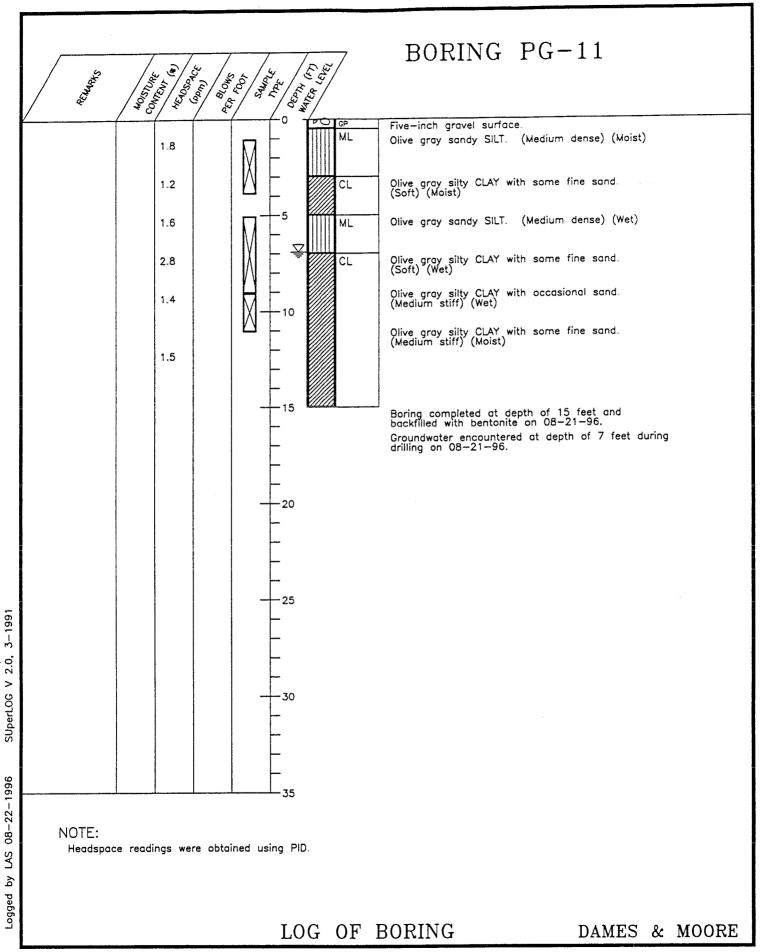

Appendix A Soil Boring Logs

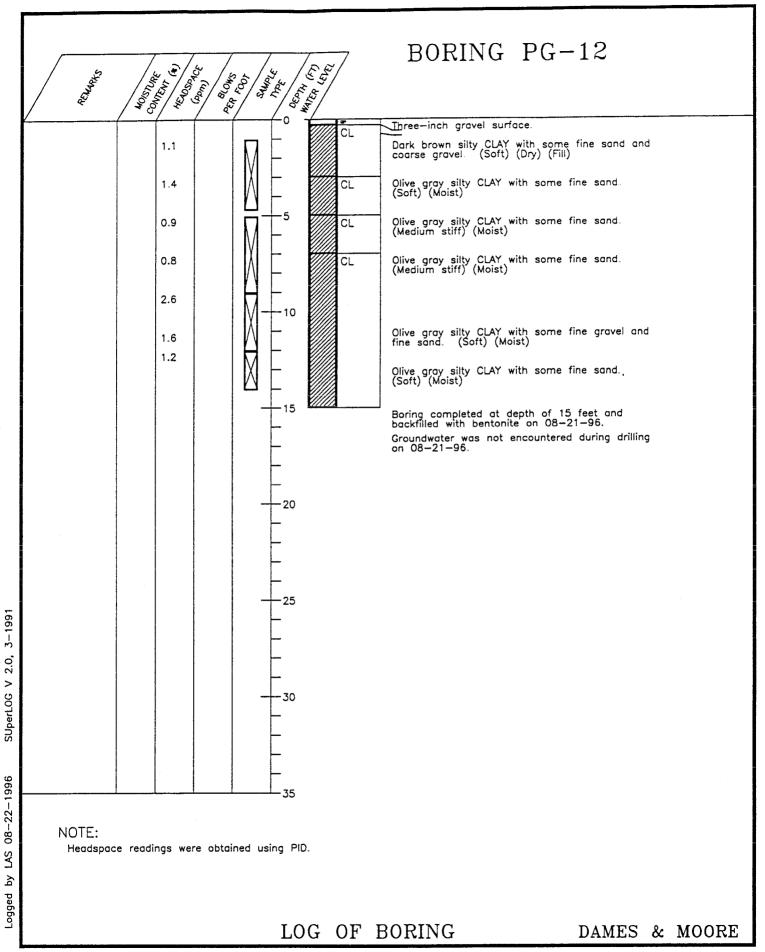


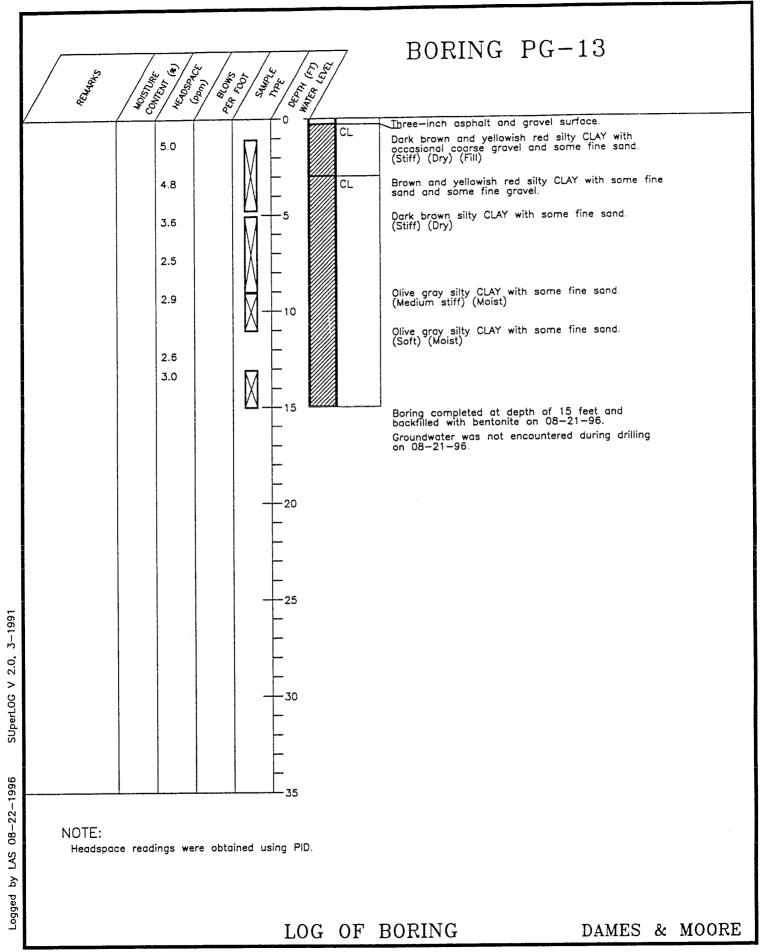


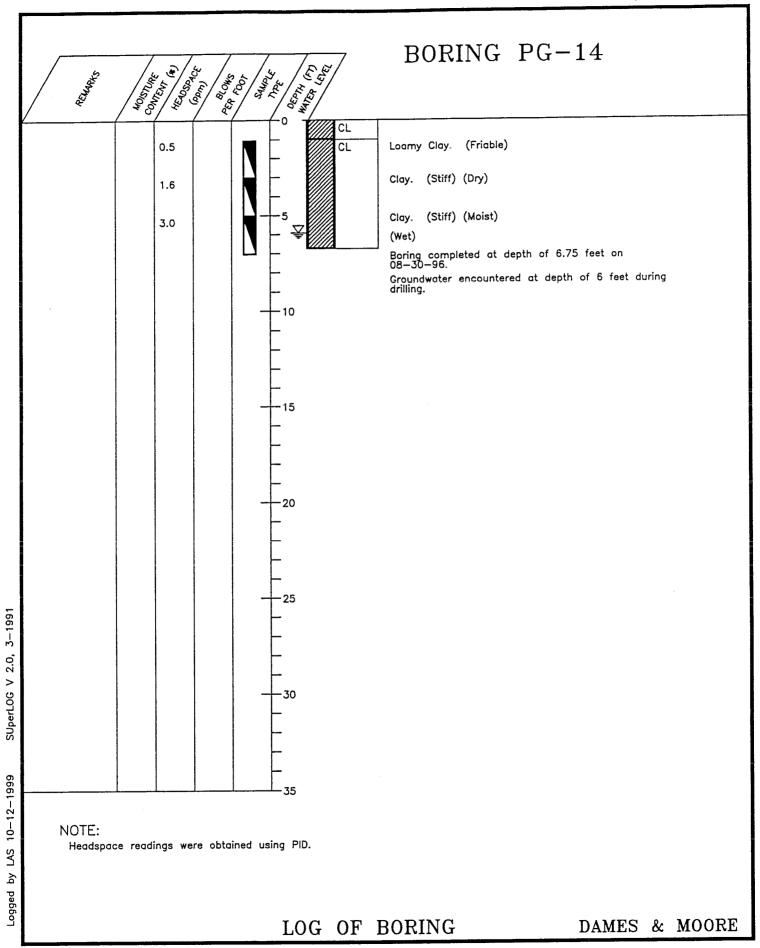


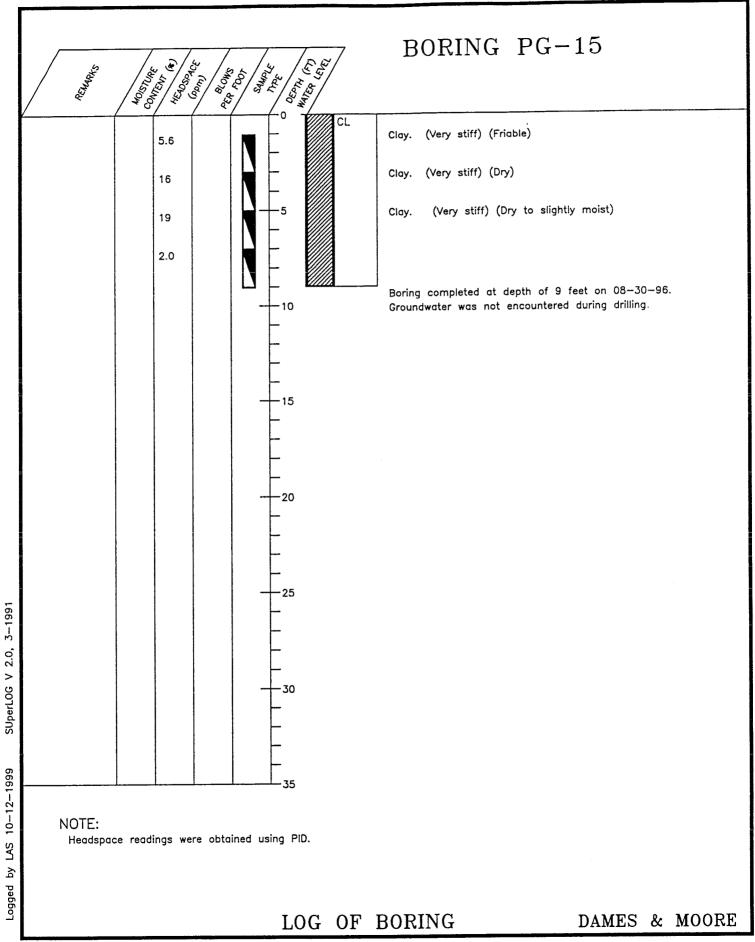


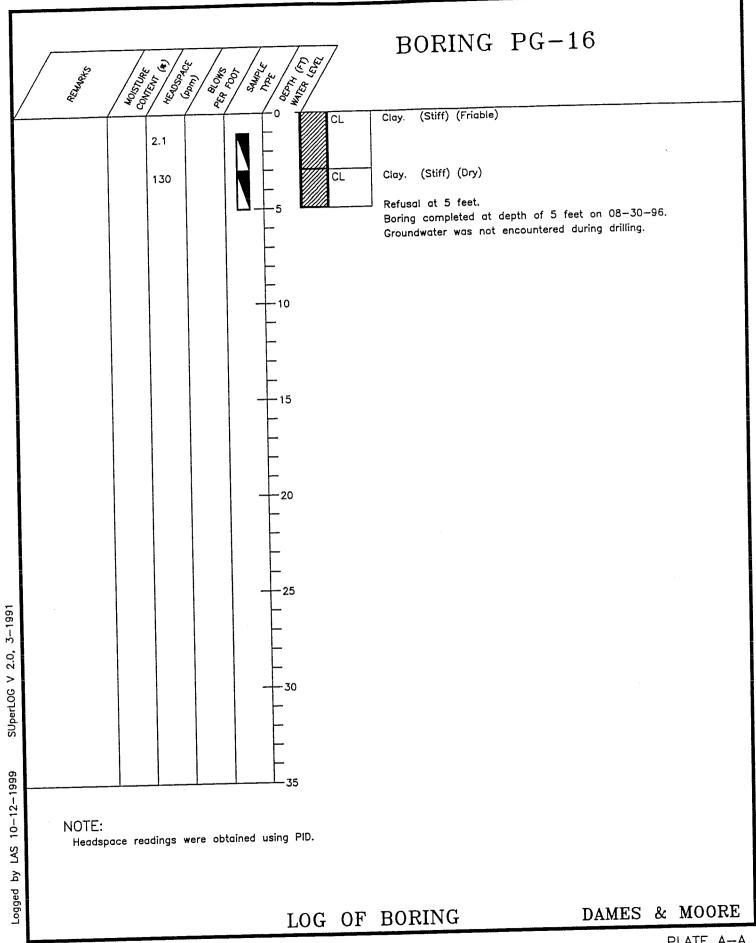


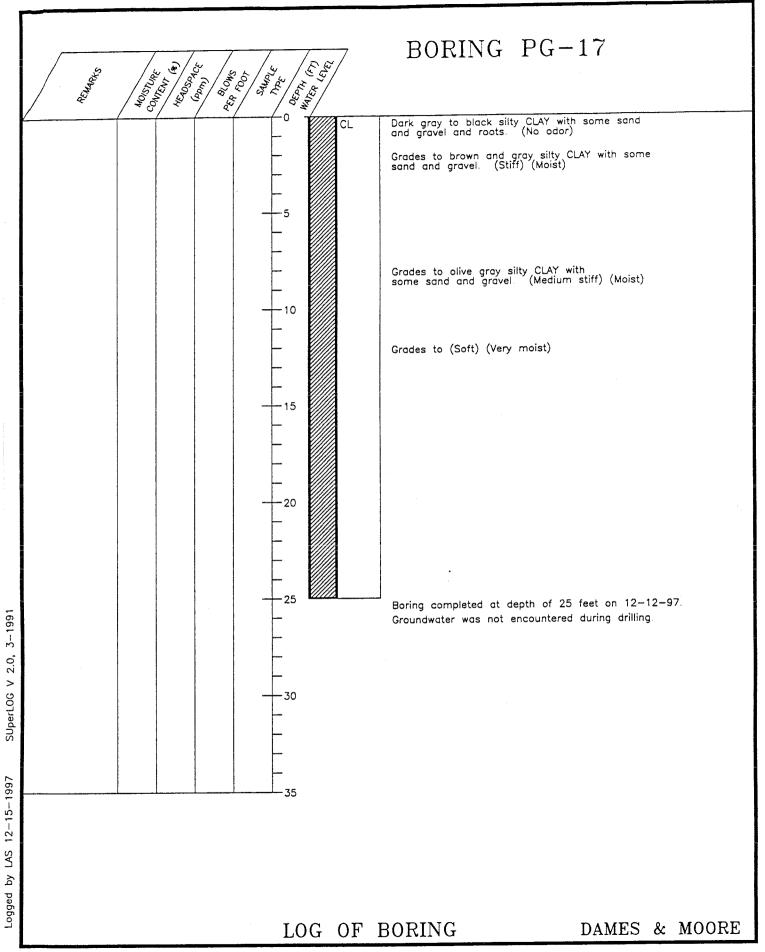


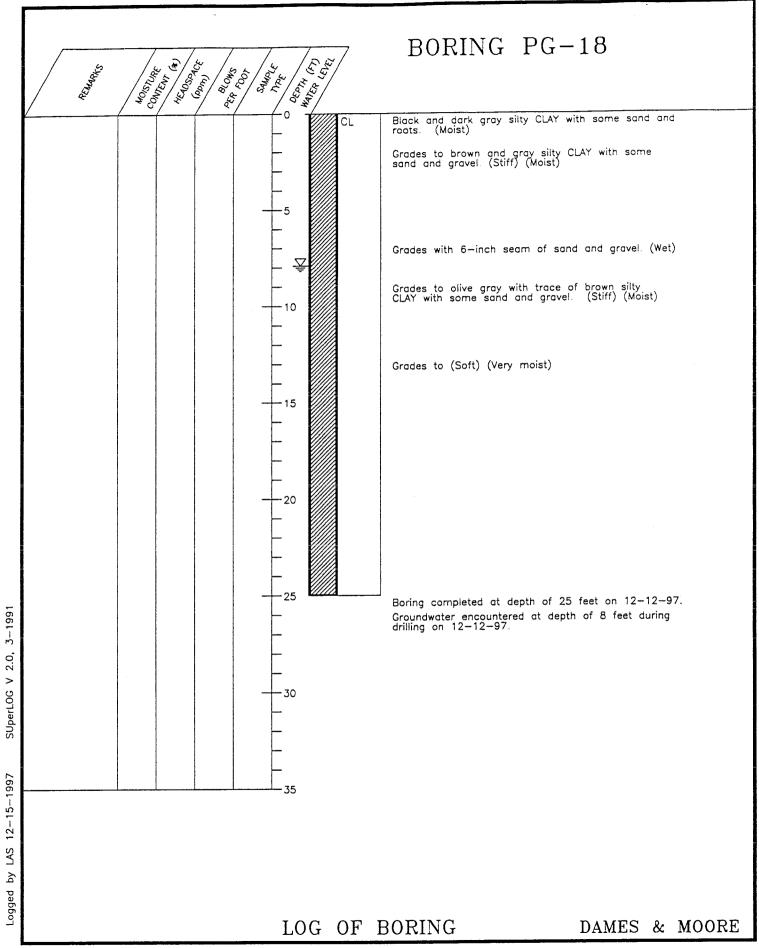


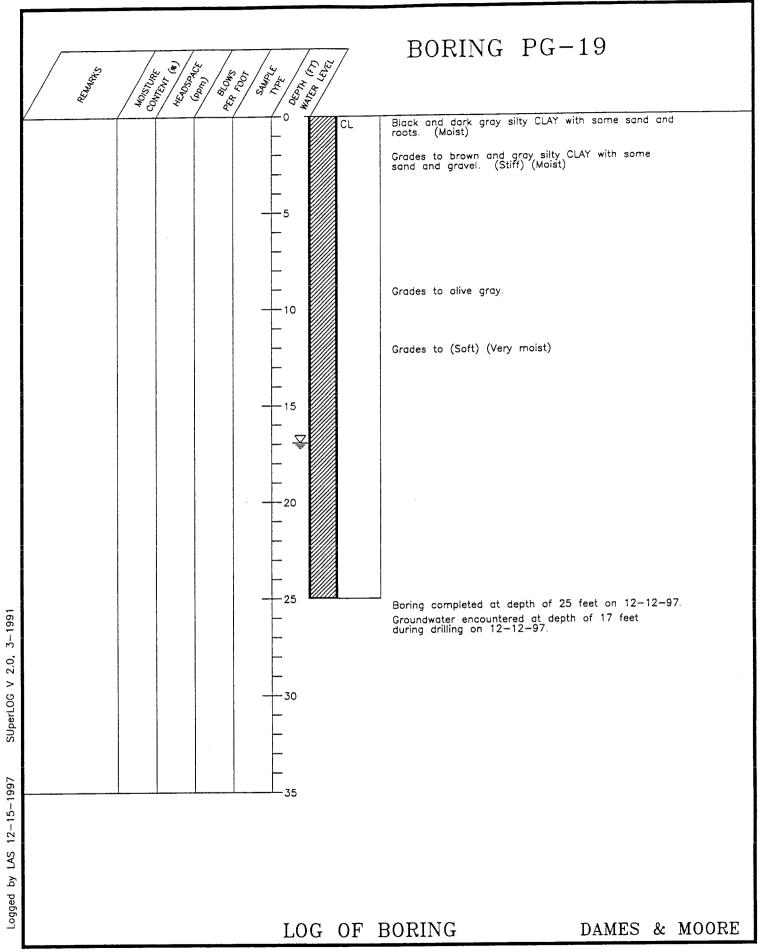


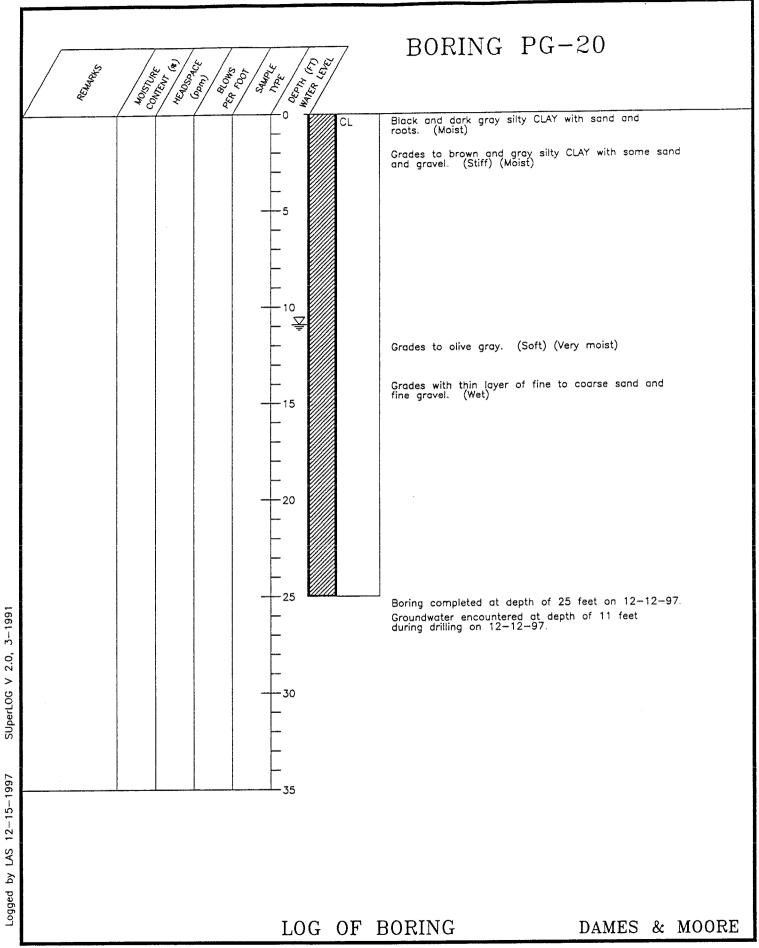


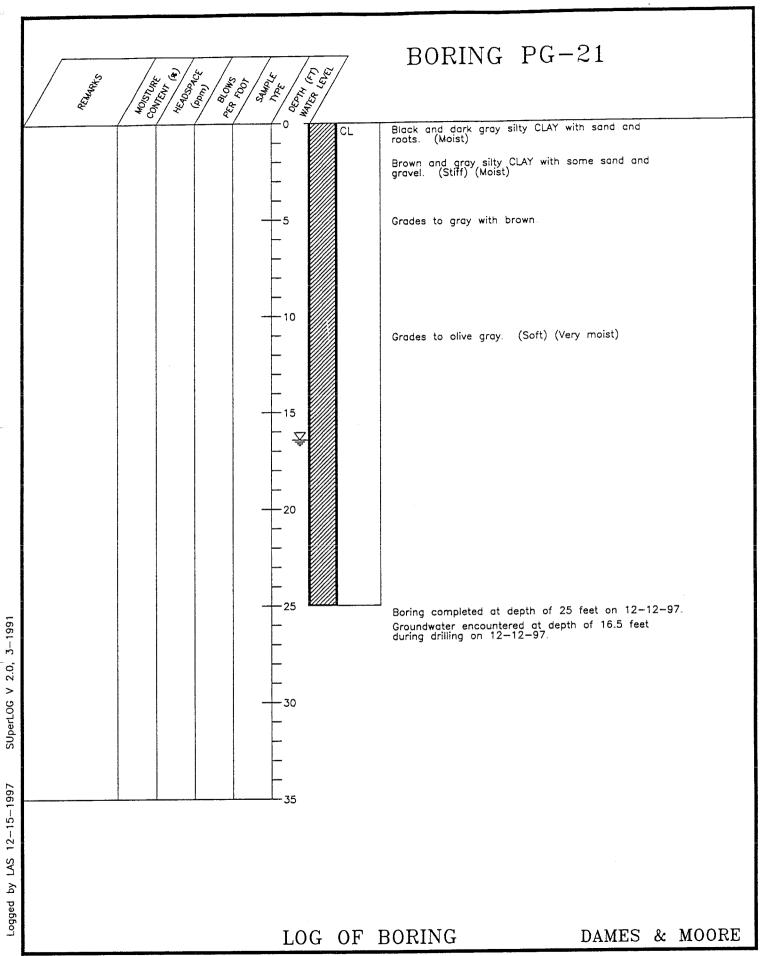


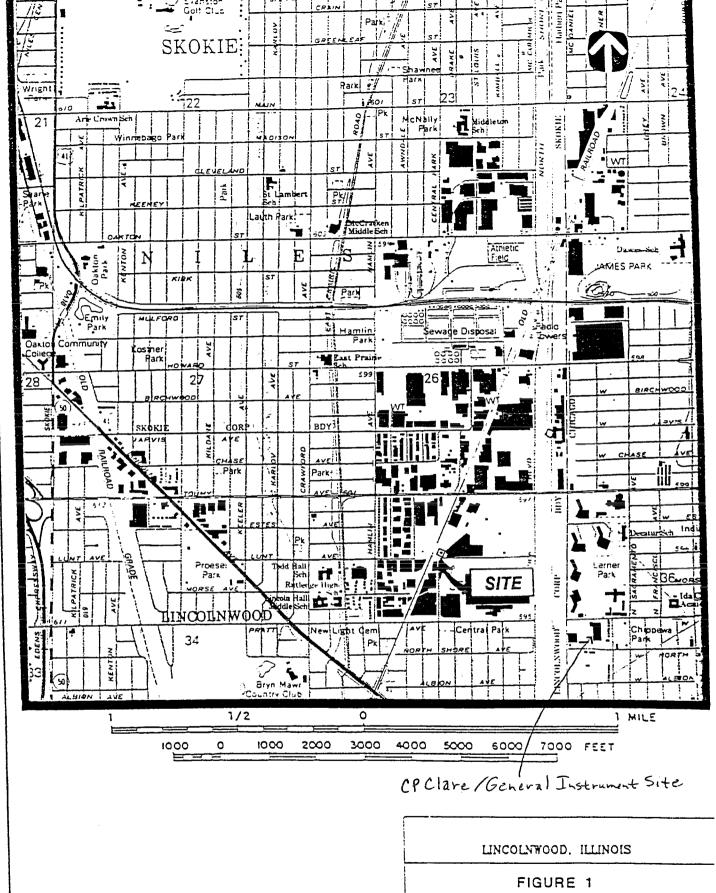




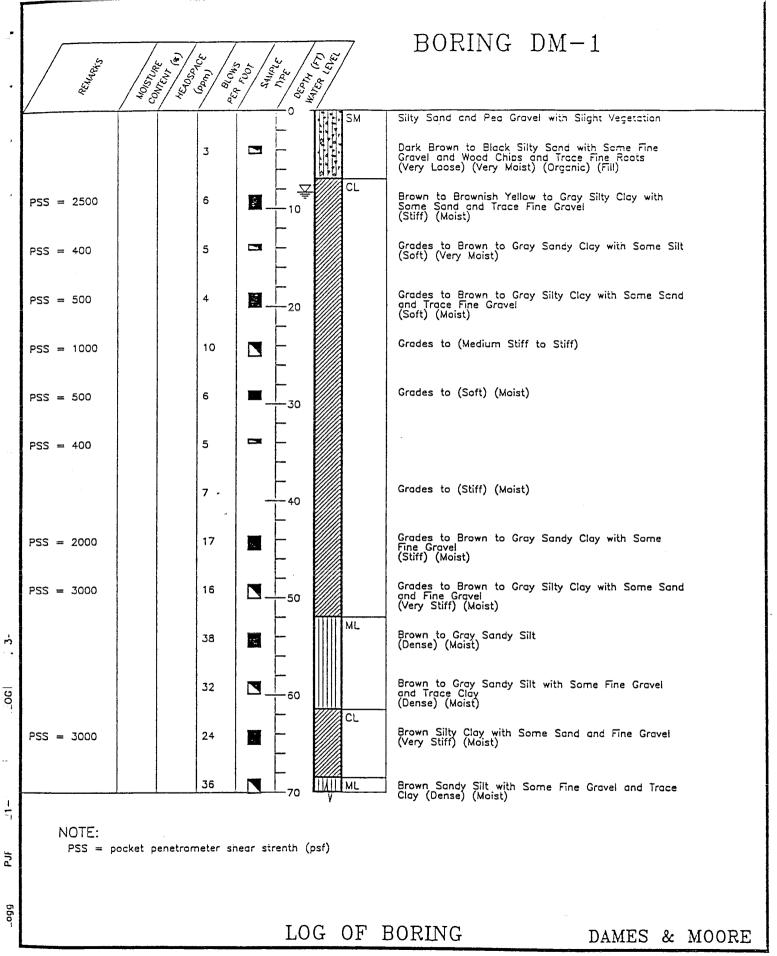


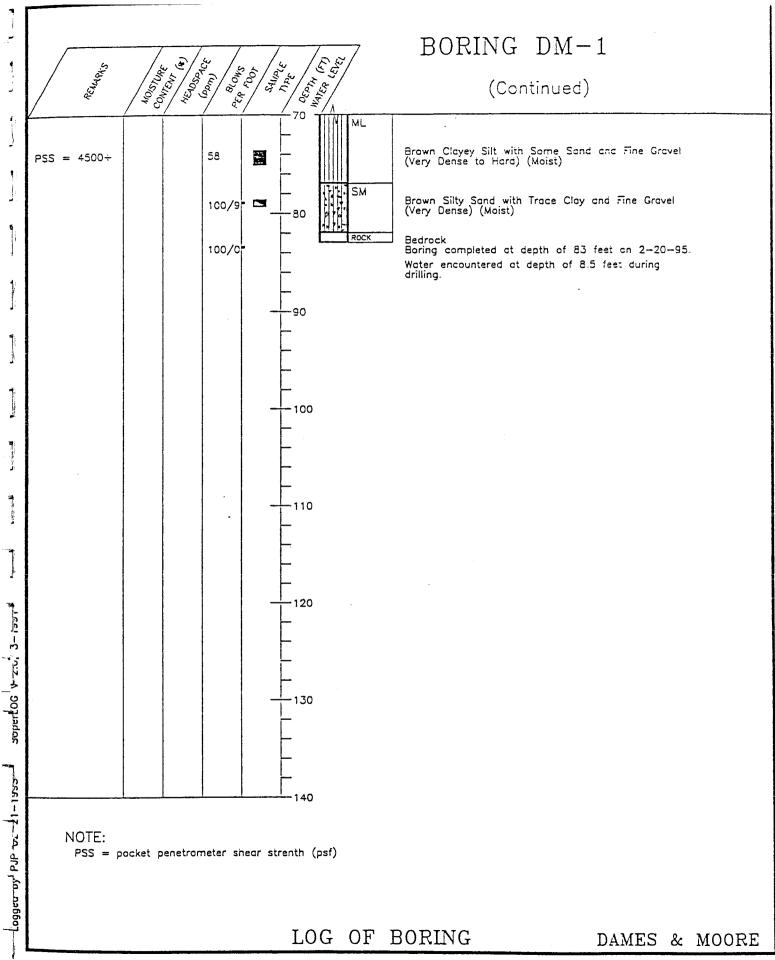


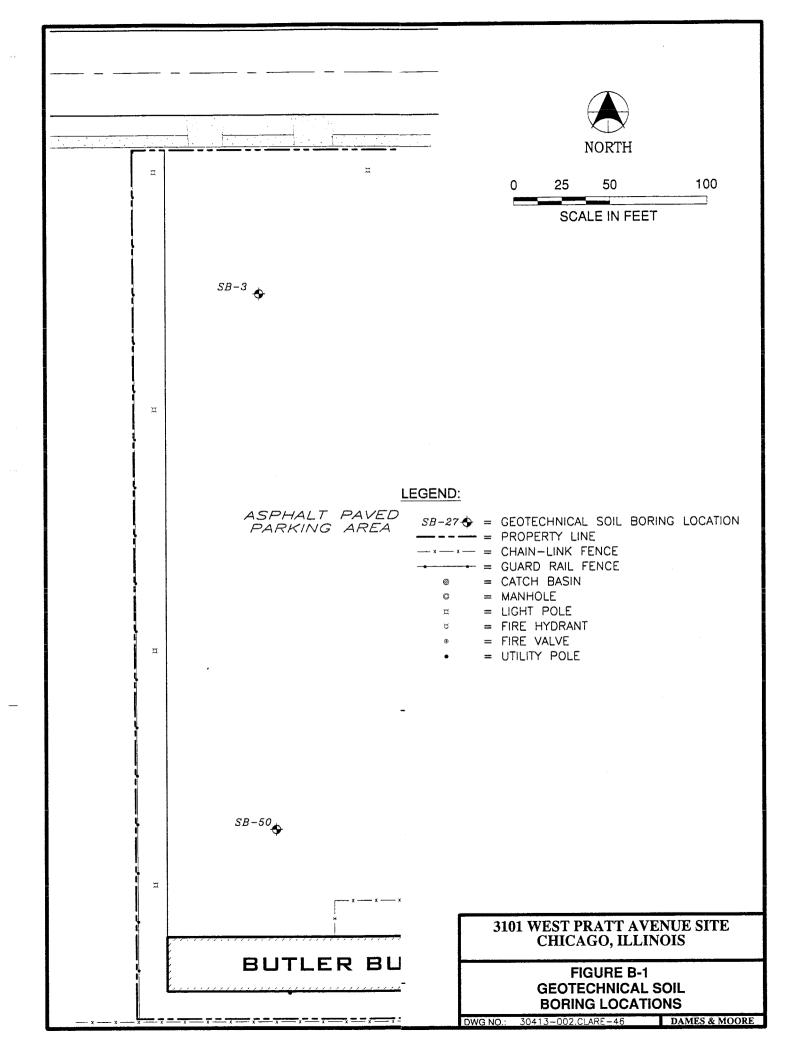


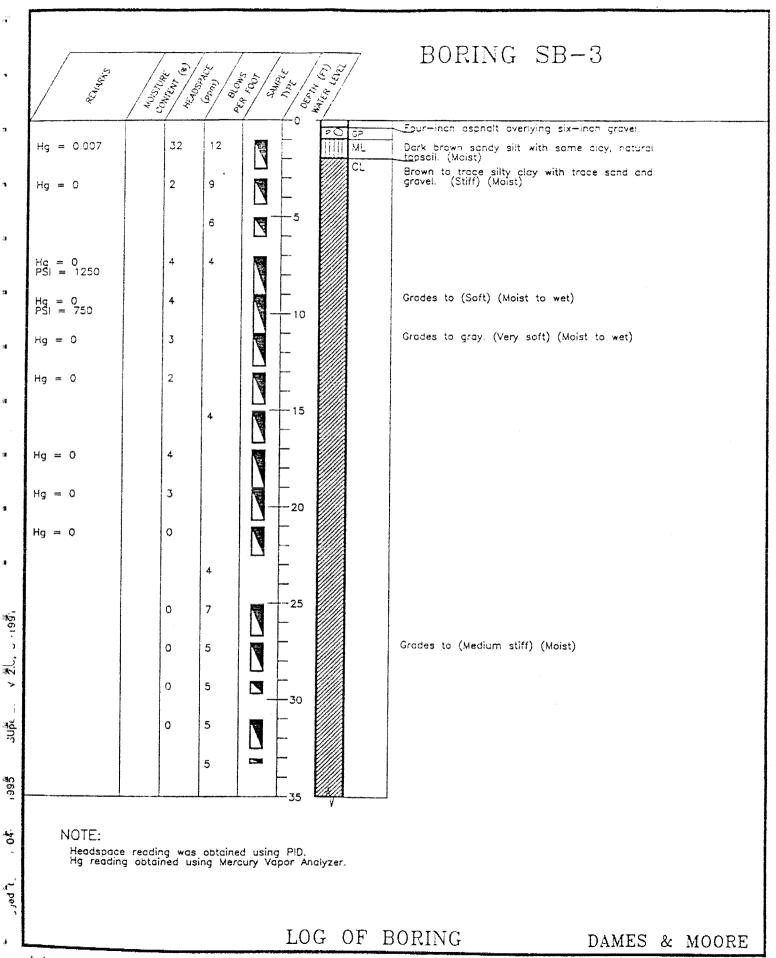


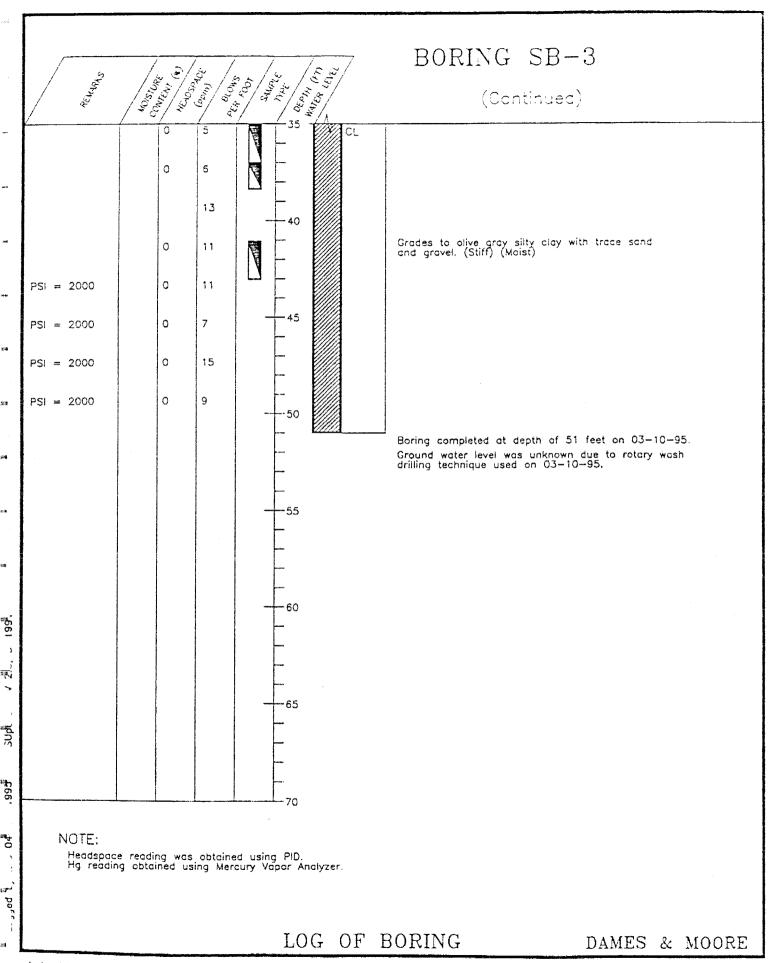
Appendix B Off-Site Boring Logs/Location Maps

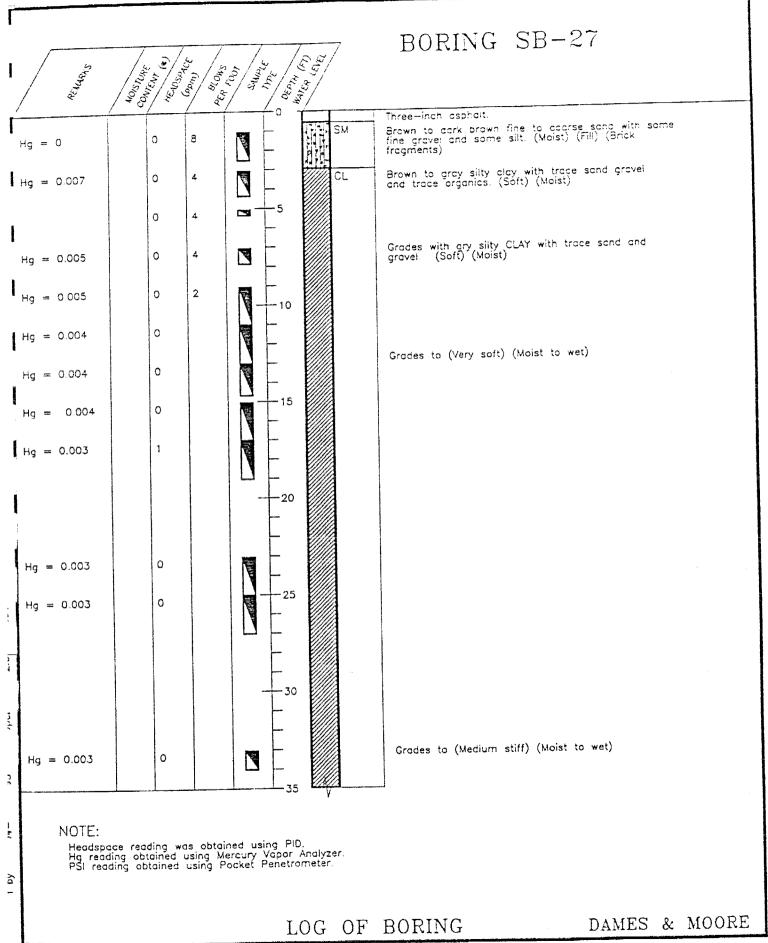


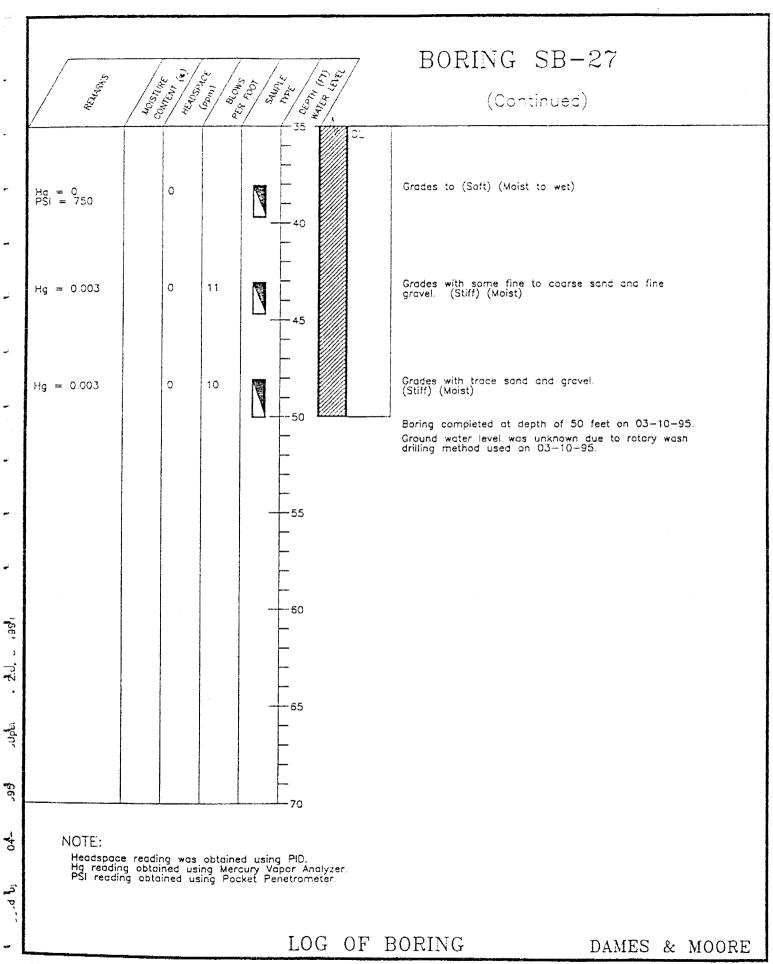

MAP REFERENCE: U.S.G.S. QUADRANGLE MAP 7 1/2 MINUTE SERIES (TOPOGRAPHIC)

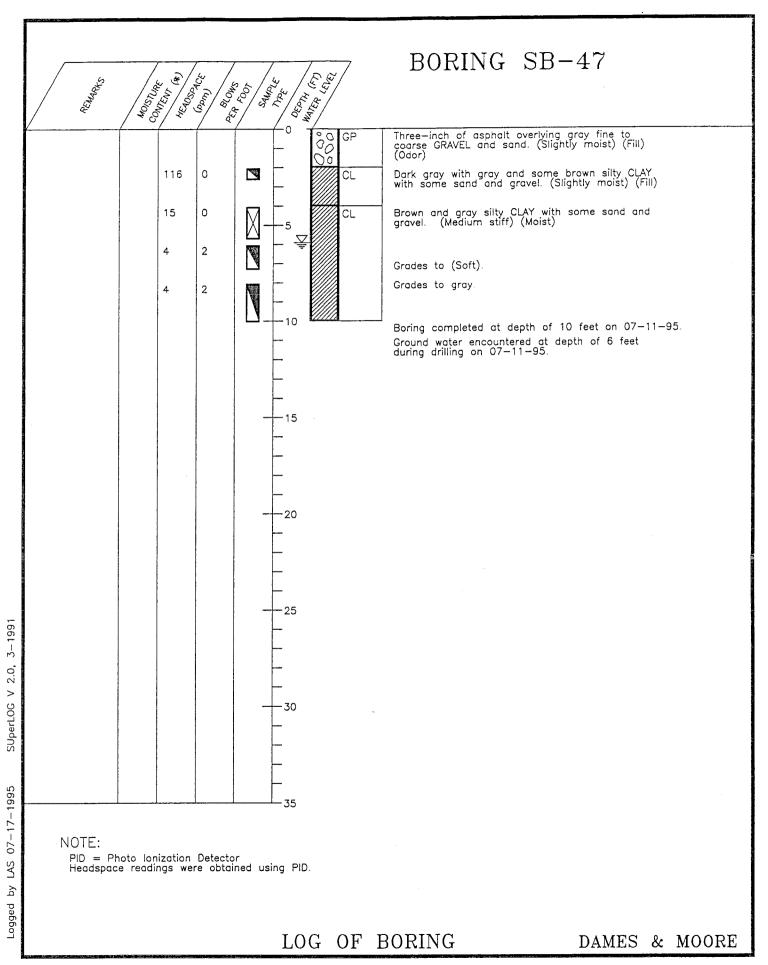

EVANSTON, ILLINOIS 1993.

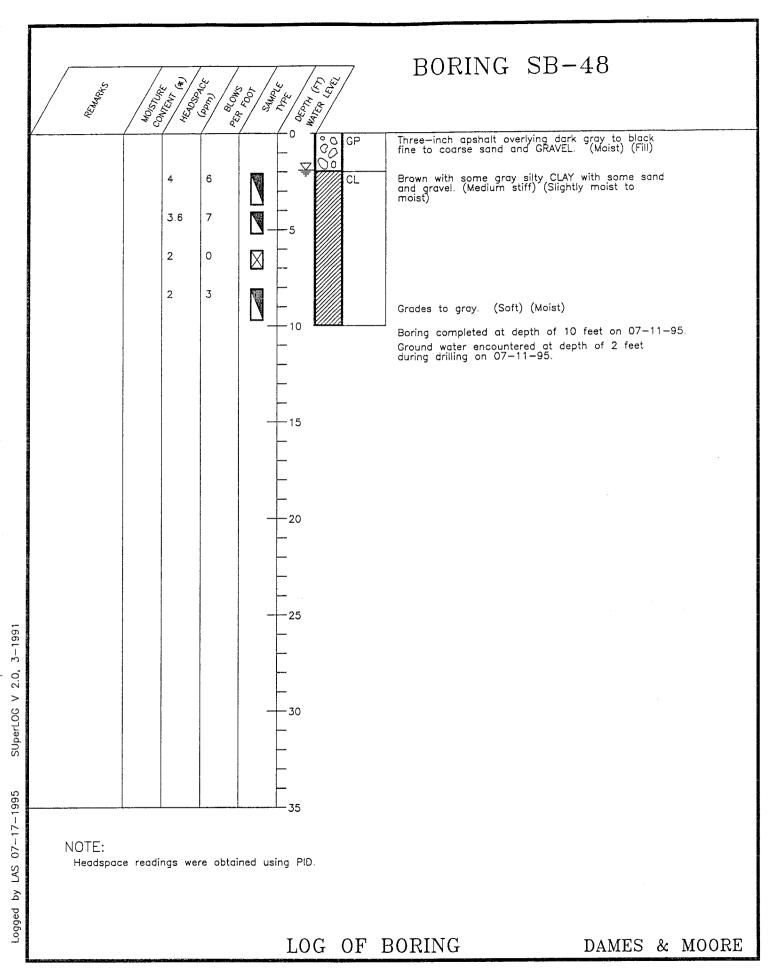

SITE LOCATION MAP **80' DEEP SOIL BORING**

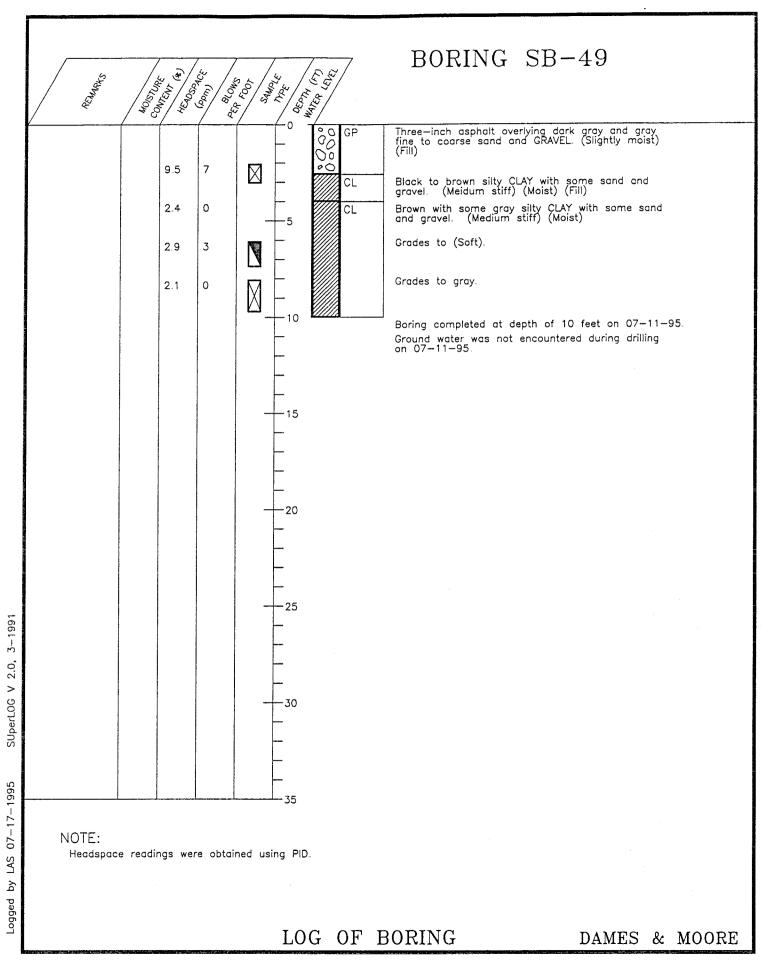

Dames & Moore







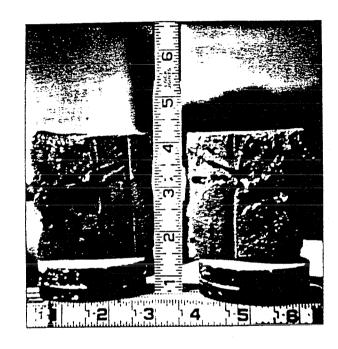




07-17-1995

LAS ρ

Appendix C Geotechnical Data



Dailles & most

PERMEABILITY TEST BY BACK PRESSURE CONSTANT HEAD (Pbp)

oh#	36413	- 201	
ocation			
oring#	<u> 53 - 3</u>	3	
amnie #	SHELB	4	
enth (SHELB 19-11)	10.	5'
-,			
effection So	eed		€ in/Hr
			7 pcr
aterai Pressu	ire		
aturated 🖽	-	Field Mois	ture
et-Up_3/	2 <u>8/95</u> Tested CC/MC	261	(1620ffice)
oil Type	CLIMC		
1			

	Initial Final 251.6
Weight soil & dish no. \mathcal{H} – 2.3	
Dry we ight soil & dish	222.2
Net loss of moisture	
Weight of dish only	//3.6
Net weight of dry soil	
Moisture, % of dry weight	27.1 24.1
Wt. solids + moisture	Wn <u>443.3 433.1 gms.</u>
W ₀ ÷ 454	W ₀ lbs.
Weight solids	Ws 348.9 gms.
Wet density $W_0^t \div V_0^t$	122.7 127.4 pcf
Dry density	96.6 102.7 pcf
Net diameter	D ₀ 2-416 in.
Area $(0.785 D_0^2)$	An 4.562 4.351 sq. in
Height	Ho 3.00 2.973 in
Volume $(A_0H_0) \div 1728$	V'_0cu. ft.
Volume $(A_0H_0) \times 16.4$	V 225.44 212.14 cc
Specific gravity of solids	G:
Volume of solids W _S + G _S	V ₂ cc
$(V_0 - V_s) \div V_s$	
• •	e;cc
Initial burette reading	
Burette reading under pressure	cc
$(V_p - V_s) + V_s$	ep

KAV = 2.72 ×10 -8 am/s

DAMES & MOURE SATURATION DATA

ROJECT:	<u> </u>				LO			
Boring No.:	58-3	Sample:_	CHGCB/ Der	oth: <u>10.5</u>	(ft./m.) Set	up: <u>Æ /</u>	<u> </u>	95
σ ₃ =	7 psi = _	1008 psf	Туре	of Test: Pen	_ Cell No.:	Dial N	lo.:	,
DATE		ME OPEN	CHAMBER PRESSURE (PSI)	BACK PRESSURE (PSI)	EXTERNAL BURETTE OR DIAL RDG.	PORE PRESSURE (PSI)	Δ	В
		1526		0 4/4	(CC)/(IN.)	/	2.3/	
3/29/95	1525	1552	0/5	0 9/9	8.0 / 9.4		2.3/	
	1551		5/10	612; RJ 0 19/19	9.9/11.4	4.0/6.5	2.5/5	
	1610	1611	10/70	0 29/29	11.4/13.3	9.0/14.9	5.9/10	
	1639	1640	20/30	0 29/29 CCD 58D	13.6/15.4	19.0/ 27.2	8.2/	
]	1657	1658	30/110	039/39 cepses	15.2/16.6	29.0/ 38.4	9.4/0	
	1704		40/50	coses	16.5/ 18.0	39 0/ 49.0	10/10	
	,,,,		50/46	wosks	18.0/17.6			
1/20/0-	4		46	0 39/39	170/	//		
3/28/95	1786	0	76	0 39/27	26.8			
3/29/95	-7-1	0	46	0 39/36	34.8			
3/29193	0721	V	. 7 P	0 31136	34.4	//		
	0829	,	/					
	1409				33.3	7		
,	1533				33.6	//	<u> </u>	
	1715	102			/ 33.4	//		
3/30	0717	842		<u></u>	/ 32.4	//		
	0857	94			/32.3			
	1010	79			32.2			
	, <u>- , </u>							
			,					
				_				

Page 2 of 3

PERMEABILITY TEST BY BACK PRESSURE CONSTANT-HEAD

CP

Boring SB-3 Shelby Tube at 10.5 feet

Wet Density pcf Dry density pcf % Moisture	96.6	127.4 102.7		
Height Initial Diameter Initial Area Initial Volume Initial Initial dial Final dial Initial cc/in res Final cc/in res.	2.416 4.582 225.44 0.273 0.3		222.2 113.6 443.3 433.1	Wet soil and dish Dry soil and dish dish only Ws Initial Final Ws Weight solids
Height Final Diameter Final	2.973		cm	
		28.093	cm^2	
Height change cc/in reser. Volume change Cell Change Net Volume Change h= T/B PREss. diff	-13.3	@ 46 psi 210.30	Cm	

Standard Water .005 N CaSO4	Elapsed Time	K
Hydraulic Gradient 27.85	minutes cc's	cm/sec
	102.00 0.20	3.89E-08
	842.00 1.00	2.36E-08
	94.00 0.10	2.11E-08
	79.00 0.10	2.51E-08

| K Average = 2.72E-08 cm/s |

Dallies & moore

PERMEABILITY TEST BY BACK PRESSURE CONSTANT HEAD (Pbp)

	ပ	
	4	
	്. ന	
	ณ	
12 12	-	

KAV = 3.67 × 10 -8 cm/s

Owner				
Job# 30413-001	-			
Lagation				
Boring $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$				-
6 1 4				•
Depth (27-23)		27.5	<u> </u>	-
Deflecting Speed		in.	/Hr Min	
Lateral Pressure		P.	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	iald Hair	ura 🗍	51	
Set-Up 3/29/95 Tested 7	7.L	1/62	Office)	
Sail Type CL				_
	. <u>.</u>			_
		Initial	Final	_
Weight soil & dish no \mathcal{M} – 10	<u>22</u>	0.3		-
Dry weight soil & dish	<u> 20</u>	1.7		-
Net loss of moisture				_
Weight of dish only	11	3.2		· -
Net weight of dry soil				_
Moisture, % of dry weight	_Z	21.0	19.3	_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Wt. solids + moisture	W0 4/2	2.7	476.6	gms.
W ₀ ÷ 454	w ₆	i		_lbs.
Weight solids		78.9		_gms.
Wet density $W_0' + V_0'$. 13	3.7	132.9	
Dry density	//	04	111.3	_pcf
Diy density				
Net diameter	0,2	416		_in.
Area (0.785 D ₀ ²)	An 4	.582	4.595	- _sq., in
Height			2-967	
Volume (A _o H _o) ÷ 1728	v.,		,	_cu.ft.
Valume $(A_0H_0) \times 16.4$	V.22	5.44	223.6	Lcc
Specific gravity of solids	G,			,
Volume of solids $W_S + G_S$	^² —			cc
$(V_0 - V_5) \div V_5$	e;			_
Initial burette reading	-1			cc
Burette reading under pressure				_ cc
Policite leading auger bressore	 ه-			

DAMES & IVIOURE SATURATION DATA

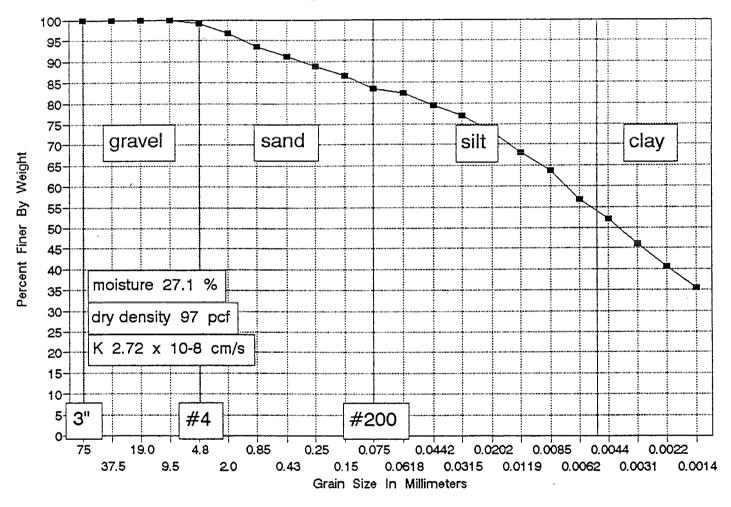
ROJECT:	CP				- <i>001</i> LO			
					(ft./m.) Set			95
σ ₃ =	14 psi =_	psf	Type o	of Test: PB2	Cell No.:	Dial N	le.:	
DATE	TII	мЕ	CHAMBER PRESSURE	BACK PRESSURE	EXTERNAL BURETTE OR	PORE PRESSURE	Δ	В
	CLOSED	OPEN	(PSI)	(PSI)	DIAL RDG. (CC)/(IN.)	(PSI)		
3/29/95	0912	0913	015	0 4/4 cws61 0 9/9	-487/.481			
,	1004	1005	5/10	500 500	479 472	4.0 / 5.8	1.8/5	
	1045	1046	10/15	0.14/14 CD 260	471/-467	9.0/11.0	20/5	
	1142	1143	15/20	0 19/19 COSE1	-455/-461	. /	2.3/	
	1304	1305	20/25	024/24	-459 455	/	2.7/	
	1532	1533	25/30	0 29/29	.453 -450	. /	3.2/	
		1615		0 34/34		29.0/32.7	3.7/	
	1614	1716	31/35 35/40	0 39/39	-446 444	34.0/38.4		
0			40/45	40 590	-445 443	/	1 7° 8 /	
	1722			coses	-443 -439	7/3.3		
3/29/95	.777	0	45/53 53	0 39/39	.439	//		
3/3/2	1723 0718 0719		53	039/36	-402/5.9	//		
3/3/		2	<u> </u>	0 24/3 6	5.8	//		
) 	0729				5.6	//		
•	0850	<i>4</i> a			5.5	//		
	1211				5.1			
	1639				4.5			<u> </u>
3/31	0740				3.1	/	1	
		701		· · · · · · · · · · · · · · · · · · ·	/	//		
				· · · · · · · · · · · · · · · · · · ·		//		,
	-				///	//		
						//		
			, , , , , , , , , , , , , , , , , , , ,		///	//		
					///	//		
					///	//		
		 			/	·	<u> </u>	

Page 2 of 3

PERMEABILITY TEST BY BACK PRESSURE CONSTANT-HEAD

CP

Boring SB-27 Shelby Tube at 27.5 feet


Wet Density pcf Dry density pcf % Moisture	Initial 133.7 110.4 21.0	132.9 111.3		
Height Initial Diameter Initial Area Initial Volume Initial Initial dial Final dial Initial cc/in res Final cc/in res.	2.416 4.582 225.44 0.677 0.71 -0.487		201.7 113.2 482.7 476	Wet soil and dish Try was Initial Try
Height Final		7.536	cm	
Diameter Final Area Final Volume Final	4.595	29.672	cm^2	
Height change cc/in reser. Volume change Cell Change Net Volume Change h= T/B PREss. diff	0.011 -7.72727 5.9 -1.82727	-	cm	

Standard Water .005 N CaSO4	Elapsed Time		K
Hydraulic Gradient 27.91	minutes	cc's	cm/sec
	49.00	0.10	3.82E-08
	201.00	0.40	3.73E-08
	268.00	0.60	4.20E-08
	901.00	1.40	2.91E-08

| K Average = 3.67E-08 cm/s |

GRADATION CURVE

Boring SB-3, sample at 10.5 feet

field 251.6 Wt soil and dish Boring SB-3 Dry soil & dish 222.2 sample at 10.5 feet 113.6 dish H 0 Moisture Content = 27.07 % 4.582 A Wet Density = ERR PCF 432.4 Ws Dry Density = ERR PCF

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

Dry weight of TOTAL sample= 340.3 sample split -#10 sieve = 42.50

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	2.58	99.24%
# 10	11.27	96.69%
# 20	1.36	93.59%
# 40	2.42	91.18%
# 60	3.44	88.86%
# 100	4.47	86.52%
# 200	5.78	83.54%

Constants this test

Gs= 2.5 20c=.0143

When 5 grams of Sodium

Hexametaphosphate used correction

= 6

HYDROMETER ANALYSIS

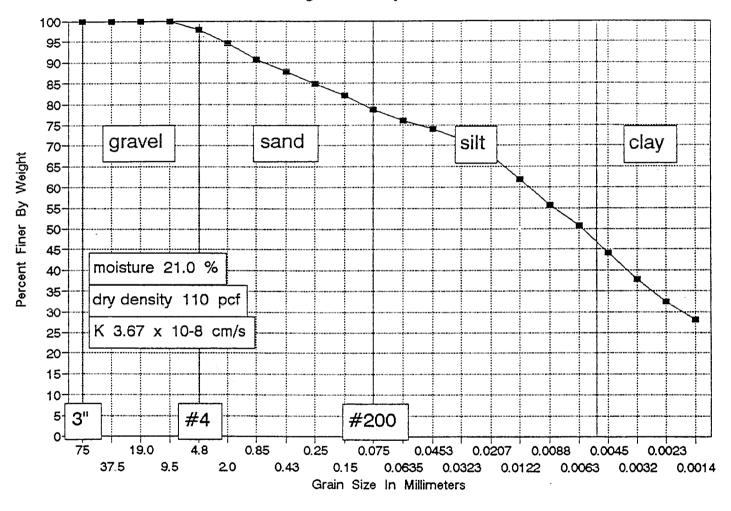
						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	42.2	9.34	0.0618	85.17	82.35
1	19	40.9	9.55	0.0442	82.11	79.39
2	19	39.8	9.73	0.0315	79.52	76.89
5	19	38.1	10.01	0.0202	75.52	73.02
15	19	35.9	10.38	0.0119	70.35	68.02
30	19	34	10.69	0.0085	65.88	63.69
60	19	31	11.19	0.0062	58.82	56.87
120	19	28.9	11.53	0.0044	53.88	52.09
250	19	26.2	11.98	0.0031	47.52	45.95
500	19	23.8	12.37	0.0022	41.88	40.49
1425	19	21.6	12.74	0.0014	36.70	35.49

COMPUTED BY CHECKED BY

51-39

JRAQT	FORM	1040-A
-31-75		

TECHNICIAN


SAZ HAZ BLK SA -#200

ow	NER /CLIENT_	CP				_			_ JOB i	MUP	BER	30	41	3-0	01	
LOC	CATION/PROJE	ст										DA	TE -	· · · ·		
BOF	RING <u>SB</u>	<u>-3</u> s	SAMF	PLE _5	HEL	-B·	<u>/ DEPTH</u>	_/	0.5			_ BY			·	
	DE	NSITY			M	DIST	URE ANALYSIS		NIC						EX. #	
HE	IGHT= 3.00	DIAMETER	?= ;	2.416	PAN	l			M-Z	3		07		-4	335	5 F
-	MBER OF RING					OF	PAN & WET SO	IL	251.0	0		6.89				
WI	. OF RINGS &	WET SOIL			WT.	OF	PAN & DRY SO		222	2	16	4.09	91	1.77		
WI	. OF RINGS						MOISTURE									
WT	. OF WET SOIL		40	43.3	WT.	OF I	PAN	_	113.	6	10	6.98	4	3.57		
FIE	LD DENSITY				WT.	OF	DRY SOIL	\dashv								
DR	Y DENSITY				MOIS	STU	RE CONTENT %	,					L			
Г	WET SAI	MPLE		F								FIELD SA	AMP	LE CONT	AINER	
WI	. OF WET SAN	MPLE & PAI	7	445	-, <u>s</u>											
WI	OF PAN			13	.4						D	RY SIEVE	=	WA.	SH SIEV	Ε
WI	. OF WET SOIL													ļ		
W	OF SAMPLE	OVEN DRI	ED	<u> </u>										1		
<u></u>		· ·		i								ACCI	JMUI	ATIVE P	ERCEN	Г
SPLIT	PAN	PAN SIE		VE	VE WEIGHT		ACCUMULATIVE WEIGHT			P	ARTI	AL	TOT	AL		
	NUMBER	WEIGHT	Γ	NUM	BER	BER RETAINED		RETA			RETAINE	D	FINER	FINE	R	
SAMPLE				<u> </u>											<u></u>	
SA	-												ļ			
□i								Ť	<u> </u>							
		1			3 -	_		\dashv								一
				<u> </u>				+					+		+	
ار	:			1-1	/2"-]		<u>_</u>						····	1	
				3	/4"											
				3	/8 *			Ī	0							
				#	4			Ť	2,5	58			T			
				#	10			寸	11.2	7			十		†	
	ST-39	<u> </u>		<u> </u>	20			1	1.24	<u>-/</u>						
				 	40			+	24	_						=
				<u> </u>	60 60			\dashv	21	<u> </u>	-		+		1	一
				 	00			+	2, 4	<u> </u>			$\frac{1}{1}$			_
		<u> </u>	···	 				4	4.4	<u> </u>			+		+	႕
				#2	200			1	り./	<u>60</u>			\dashv			
												<u> </u>	_	trade the state of	<u> </u>	
								\perp								
		-		•								ø _n				
NO	TE:					-	-							n		-

W.Dames & Moore

GRADATION CURVE

Boring SB-27, sample at 27.5 feet

field Wt soil and dish 220.3 Boring SB-27 Dry soil & dish 201.7 sample at 27.5 feet 113.2 dish Η 21.02 % Moisture Content = 4.582 Wet Density = A ERR PCF Dry Density = Ws 389.7 ERR PCF

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

Dry weight of TOTAL sample= 322.0 sample split -#10 sieve = 41.16

		Total
	Weight	Percent
	MEIGHE	
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	6.86	97.87%
# 10	16.89	94.76%
# 20	1.73	90.77%
# 40	3.02	87.80%
# 60	4.31	84.83%
# 100	5.52	82.05%
# 200	6.99	78.66%

Constants this test

Gs= 2.5 20c=.0143

When 5 grams of Sodium

Hexametaphosphate used correction

HYDROMETER ANALYSIS

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	39	9.87	0.0635	80.18	75.97
1	19	38.1	10.01	0.0453	77.99	73.90
2	19	37.1	10.18	0.0323	75.56	71.60
5	19	35.4	10.46	0.0207	71.43	67.68
15	19	32.9	10.87	0.0122	65.36	61.93
30	19	30.2	11.32	0.0088	58.80	55.71
60	19	28	11.68	0.0063	53.45	50.65
120	19	25.2	12.14	0.0045	46.65	44.20
250	19	22.4	12.60	0.0032	39.85	37.76
500	19	20.1	12.98	0.0023	34.26	32.46
1424	19	18.2	13.30	0.0014	29.64	28.09

	HYDROMETER ANALYSIS DATE 3 29 95 DATE 3 20 13 00										
	00					20112	00				
OWNER	<u>CP</u>	·		7775		DB NO.					
BORING N	OWNER CP JOB NO. 30413 '001 BORING NO. 58-27 27,5'										
	CLASSIFICATION										
	SAMPLE SPECIMEN NO.										
DISH NO.	429		GRA	DUATE NO.	<u> </u>						
DISPERSI	NG AGENT	USED	SODIUM	HEXA METI	क क्रियंश्वर	ATE QUANTY 5	1.00 GLA	45			
DISPERS	ING AGENT	CORRE	CTION, C	。 5	; MENISC	CUS CORRECTION,	CM= /				
				CORRECTED		PARTICLE	PERCEN	TFINER			
TIME	TIME	°c	t e	READING	z _R	DIA.	<u> </u>				
			(R1)	R+CM-C		(MM)	PARTIAL	TOTAL			
0737											
0 () /	.5	15.	39								
	1.	19"	32'								
		19.	37'								
	2.		7-4								
		1 " "	354								
	15.	/1	32								
	30.	/	202								
	60	19.	28	-							
	120	19.	252			<u> </u>					
	250	10.	224								
<u> </u>	500	17	20'								
	700		122								
0721		19	1 /2								
			<u> </u>	·			 	 			
		<u> </u>	<u></u>								
r a	DISH PLL	JS DRY	SOIL			SPECIFIC GRAVITY	OF SOLID	s.			
WEIGHT IN GRAMS	DISH					G _S =					
WEIG	DRY SOIL	_		w _o		CORRECTED HYDRO	METER RE	ADING (R			
	142,97 - 598,94 = HYDROMETER READING (RT)+CM										
		WT.		שו לי	. / 	EIS FOUATION USD	NG CORREC	TED			
THE PAR	TICLE DIAM	METER Ing. u	(D) IS CAI SE NOMO	RAPHIC CHA	RUM SICK	CE'S EQUATION USING CLUTION OF STOKE	'S EQUATIO	on.			
1				TIC GRAVITY	w_ = T0	TAL OVEN-DRY WT.	OF SAMPL	E USED			
			G		FO	R COMBINED ANALY	313				
PARTIAL	PERCENT	FINER=	G-1 X	(R-C _D +M)	w ₀ = ov	EN-DRY WT. IN GRA R HYDROMETER ANA	MS OF SO	L USED			
HYDROM	ETER GRAD	DUATED	IN GRAMS	PER LITER	FO	R HYDROMETER ARA		INED ON			

PARTIAL PERCENT FINER= 100 (R-CD+M) W1 = OVEN-DRY WT OF TOTAL PERCENT FINER = PARTIAL PERCENT FINER X WS

PEMARKS			

		Carl	
TECHNICIA	COMPUTED BY	CHECKED BY MI	
. 20			

URAQT FORM 1040-A 2-31-75

SA HA EL BLK SA -#200

OW	NER /CLIENT_	CP_						JOB	NUM	1BEF	30	941	13 - 0	01	
	CATION/PROJE										DA	TE_	3/29	195	
	RING _58 -		MPLE			DEPT	гн <u>-</u>	27.5			_ BY	£4v		······································	
	DE	NSITY		МС	DIST	JRE ANAI	LYSIS	Ī		+ =	† 10		Ŧ10	EXTY	ہے
HE		DIAMETER=		PAN				M-	10	1	2	E	10	428	2
	MBER OF RING			1		PAN & WE	T SOIL			19	0.69	18	59I	-	
WI	. OF RINGS &	WET SOIL		WT.	OF F	PAN & DR	Y SOIL	201.	7	14	35,72	110	16.62		
WI	. OF RINGS			WT.	OF N	MOISTURE	<u> </u>								
WI	. OF WET SOIL			WT.	OF F	PAN		113.	2	11	0,57	4	3.44		
FIE	LD DENSITY			WT.	OF [ORY SOIL									
DR	Y DENSITY			MOIS	TUR	E CONTE	NT %	<u> </u>		<u> </u>		<u> </u>			
$\overline{}$	WET SAM	MPI F	T				T		1		FIELD SA	AMPI	LE CONT	AINER	
W	OF WET SAN		403					<u> </u>	1 L						
-	OF PAN			.3_					1 [C	RY SIEVE	=	WAS	SH SIEVE	
\vdash	OF WET SOIL		1						\mathbb{I}						
	OF SAMPLE/]
								1			4001	13.41.11	LATIVE P	EDCENT	
PL.IT	PAN	PAN	SIF	EVE		WEIG	НТ	ACCUM			<u> </u>	ARTI		TOTA	-
တ	NUMBER	WEIGHT	<u>L</u>	18ER		RETAI		RETA			<u> </u>	_		 	\dashv
<u>a</u>											RETAINE	D	FINER	FINEF	
SAMPLE								<u> </u>						T	
			 		=	<u> </u>		l I				十			T
				3"	\dashv		·					\dashv			一
			 	-	_						<u> </u>	<u> </u>	·		
			1-	1/2*	_					· · · · · · ·		4		1	닉
			3	/4"								\perp			
			3	/8*				0							
			#	‡ 4				6.8	36)					
Ø	ST-32		#	10	T	i		16.8							
			#	20	乛			1.7				T			
				40	司			3.0				Ť			
			+	60	一			43	<u> </u>			\dashv		+	
					ᅱ			55	0		1	$\frac{1}{1}$			
	#100					· · · · · · · · · · · · · · · · · · ·		<u> </u>]	\dashv	·	1		
#2		200	\dashv			6.9	7		<u> </u> 	<u> </u>		 			
								<u> </u>							
_															
			-			-									

Cames & Moore

SPECIFIC GRAVITY TEST

JOB NO. 30413-001 OWNER CP CRENE
TESTED BY RITH DATE 19

DETERMINATION NO.	27-26 53-27	55-9	
FLASK NO.	7	6	
WT. FLASK + WATER + SOIL , W	699.32	697.99	
TEMPERATURE IN °C, T.	17.50	20°	
WT. FLASK + WATER, W 2	663.42	687.70	
DISH NO.	A	(TI	
WT. DISH+DRY SOIL	569.82	569.04	
WT. DISH	545.05	545.05	
WT. SOIL, Ws	24.77	22.99	
SPECIFIC GRAVITY OF WATER AT T, G	1.0003	1.0000	
	2.79	1,90	
SPECIFIC GRAVITY OF SOIL, Gs			

REMARKS

 $G_s = \frac{G_T W_s}{W_s + W_2 - W_1}$

PERMEABILITY TEST BY BACK PRESSURE CONSTANT HEAD (Pbp)

4 -	
Owner C. P. CLAR	l£
Job#	
Location CHICAGO	
Boring # 3 - 49	
Sample # ST-1	
Depth 2-10	
Deflecting Speed	in/Hr Min
Lateral Pressure	7 ~~
	Field Maisture
Set-Up 7/15/95 Tested_	(Office)
Soil TypeCL/1-16 W F-	ELAVE LEWINE
SM_	
	Initial Final
Weight soil & dish no. H-113	221.0
Dry weight soil & dish	208.7
Net loss of moisture	
Weight of dish only	/13.2
Net weight of dry soil	
Moisture, % of dry weight	12.9 14.3
Wt. solids + moisture	Wo 481-6 487-8 gms.
W ₀ ÷ 454	Wo lbs.
Weight salids	Ws 426.6 gms.
Wet density Wo + Vo	133.3 140.6 pcf
Dry density	118.1 123.0 pcf
Net diameter	00 2-46 in
Area (0.785 D ₀ ²)	An 4.582 4.398 sq in
Height	Ho 3.00 3.002 in
Volume (A ₀ H ₀) + 1728	Vocu.ft.
Volume $(A_0H_0) \times 164$	νο <u>225.44 216.54</u> cc
Specific gravity of solids	G _s
Valume of solids $W_s = G_s$	V ₅
$(V_0 - V_s) + V_s$	e;
Initial burette reading	cc
Burette reading under pressure	cc
$(V_D - V_S) + V_S$	e _p

KAV = 9.01 × 10 = cm/s

DESIGNATION OF TAXABLE PARTY

SATURATION DATA

ROJECT: C. D CLARE NO: 30413-CC1 LOCATION: CHICALD Boring No.: 2 49 Sample: 57 4 Depth: 8-14 (n.im.) Set up: 24 7/17; 97 7 pi = ph Type of Tett: 10 2 Call No.: Dist No.: Dis	ROJECT:	C.P C	CLARE	NO	: <u>30413</u> -	- 001 LO	CATION:	HICAGO	
TIME CLAMBER PRESSURE PRESSURE PRESSURE (PS) DATE DATE DORE PRESSURE PRESSURE (PS) DATE	Boring No.:	B 49	Sample:_	57 4 Des	oth: <u>8-10</u>	/ (ft./m.)	up: 4	7115	95
TIME CLAMBER PRESSURE PRESSURE PRESSURE (PS) DATE DATE DORE PRESSURE PRESSURE (PS) DATE	σ₃ =	7 psi =	psf	Туре	of Test: <u> </u>	Cell No.:	Dial N	lo.:	
7/15/95 1/50 1/51 0/5 200 1/2 1.2/5 1.2/5 120 1.2/5 1.2/5 1.20 1.2/5 1.20 1.2/5 1.20 1.2/5 1.20 1.2/5 1.20 1.2/5 1.20 1.2/5 1.20 1.20 1.2 1.2/5 1.20 1.20 1.2 1.2/5 1.20 1.20 1.2 1.2/5 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	DATE			PRESSURE	PRESSURE	BURETTE OR DIAL RDG.	PRESSURE	Δ	В
		CLOSED			04/4	(CC)/(IN.)	/	1.2/	
	7/15/95	1150		0/5	CW (8)	4.2 / 6.8	0.0 / 1.2	15	
12 44		1204		5/10	CC0547	7.8/ 7.8	4.0 / 5.5		
12 44 12 45 15 120 12 120 12 13 9 14.0 16.6		1227		10/15	000 560	10.6/12.4	9.0/11.0		
1311 1312 2.12 cwsss 126 148 19.0 21.8 15 21.0 21.8 15 21.0 21.8 15 21.0 21.8 15 21.0 21.8 15 21.0 21.8 15 21.0 21.8 15 21.0 2			1245			12.2/ 13.9	14.0/ 15.4	2.4/	
1342 1343 25/20 22542 14.6 15.5 24.0 27.4 3.4 1421 1422 30/35 25/35 25/35 15/5 16.4 27.0 33.2 4.7 1440 1441 35/40 20543 15/5 16.4 27.0 33.2 4.5 1440 1441 35/40 20543 16.6 17.2 34.0 32.5 4.5 1502 20/65 200540 17.7 17.8 39.0 42.2 4.5 1503 0 46 0 39/36 18.0 11/5/15 1503 0 46 0 39/36 21.0 15/5/15 15/5 30.4 1039 1040 30.2 1140 30.2 1247 49 27.6 1340 51 29.4 1419 39 29.2 1/16 2730 1031 24.1			1312		024/24		19.0/ 21.8	2.8/	
1421 1422 30/35 20583 15.6 16.4 29 0 33.2 75 1440 1441 35/40 20583 15.6 16.4 17.2 340 32.5 75 1532			1343			111/15	71/0/77 4	3.4/	
1440 1440 1441 35/40 25/45 20/45		/342	1422		0 34/34		29.07 27.	4.2/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1421	1441				29.0/ 33.2	4.5/	
1/15/95 1503 0 46 339/36 21.0 31.0 0848 31.0 0848 31.0 0848 30.4 1114 30.7 1249 49 29.6 1340 51 29.4 1/16 0730 1031 24.1		1440		35/40			1 /	4.91	
1/15/95 1503 0 46 339/39 18.9 0805 0 46 039/36 21.0 0848 31.0 0927 30.5 1039 30.4 1114 30.2 1201 46 30.0 1249 49 29.6 1340 51 29.4 1419 39 29.2 1/16 0730 1031 24.1	 	1502		40/45	ce05120_	17.2/17.8	39.9/ 4z =	1 ,5	<u> </u>
0804 0805 0 46 0 39/36 21.0 31.0				45/4%	conses	17.9/18.0			
0804 0805 0 46 0 39/36 21.8 31.2	7/15/95	1503	0	46	3 39/39	· 	/		
0848		0804	0	46	0 39/36				
1039 30.5 30.4 1114 30.2						31.0			
1039									
1714 1709									
1201 46 30.0 1249 49 29.6 1340 51 29.4 1419 39 29.2 1716 0730 1031 24.1									
1249 49 29.6 1340 51 29.4 1419 39 29.2 1716 0730 1031 24.1		1114	. ,						
1340 51 29.4 1419 39 29.2 17/16 0730 1031 24.1		1200	46					1	
1419 39 /29-2 7/16 0730 1031 /24.1		1249	49			7	1	1	!
7/16 0730 1031 / 24.1		1340	51			/ 29.4	/	1	
		1419	39			/ 29.2	! /		
1041 191 / 23.3 /	7/16	0730	1031			24.1			
		1041	191			23.3			
						/			
							///		

Page 2 of 3

PERMEABILITY TEST BY BACK PRESSURE CONSTANT-HEAD

C. P. Clare Chicago Il.

Boring SB-49 shelby tube # 4 at 8-10 feet

Wet Density pcf Dry density pcf % Moisture		140.6 123.0	
Volume Initial Initial dial	4.582 225.44 0.260 0.258		221 Wet soil and dish 208.7 Dry soil and dish 113.2 dish only 481.6 Ws Initial 487.8 Final Ws 426.6 Weight solids
Diameter Final	3.002 2.367 4.398 216.54		
Height change cc/in reser. Volume change Cell Change Net Volume Change h= T/B PREss. diff	0.002 0.011 -16.8 7.9 @ -8.9		
- 1 112500 005	N CaSO4		Elapsed

Standard Water .005 N CaSO4 Hydraulic Gradient	Elapsed Time minutes	cc's	K cm/sec
Hydraulic Gradient 27.58 "B" final 0.98	51.0	0.20	7.77E-08
	39.0	0.20	1.02E-07
	1031.0	5.10	9.80E-08
	191.0	0.80	8.30E-08

| K Average = 9.01E-08 cm/s |

PERMEABILITY TEST BY BACK PRESSURE CONSTANT HEAD (Pbp)

P C11	RE
O H 1:61	
Job#	<u> </u>
Location CHICAGE	, 1L.
Boring # <u>S8</u>	
Sample # <u>ST</u>	70'
Depth	70
	
Deflecting Speed	———in/Ar Min
Lateral Pressure	(FSI)
••••••• ,	Field Moisture
Set-Up 7/15/95 Tested_	(Office)
Soil Type CVML	
	Initial Final
Weight soil & dish no. E-20	244.7
Dry weight soil & dish	201.4
Net loss of moisture	
Weight of dish only	43.3
Net weight of dry soil	
Moisture, % of dry weight	27.4 25.2
Wt. solids + moisture	Wo 5/2.6 503.6 gms.
W ₀ ÷ 454	W ₀ ibs.
Weight solids	Ws 402-4 gms.
Wet density $W_0^* + V_0^*$	126.3 124.9 pcf
Dry density	99.2 99.8 pcf
Net diameter	Do 2-4/61 in.
Area (0.785 D_0^2)	An 4.582: 4.559 sq. in
Height	Ha 3.37 2.366 in.
Volume (A ₀ H ₀) + 1728	V 0 cu. ft.
Volume (A ₀ H ₀) x 16.4	V ₀ 253. 24 251.66 cc
Specific gravity of solids	G _s
Volume of solids W _s - G _s	V _s cc
$(V_0-V_s) - V_s$	e;
Initial burette reading	сс
Burette reading under pressure	cc
$(V_p - V_s) = V_s$	e ₂

KAV = 1.62 × 10 -7 cm/s

SATURATION DATA

ROJECT: _	C.P. CO	ARE	NO	: 30413-0	55 / LO	CATION: CA	licaco	
Boring No.:_	58-50	Sample:_	ST4 De	oth: <u>8-10 '</u>	(ft./m.) Set	up: <u> </u>	7/15	195
73 =		psf	Туре	of Test: <u>POD</u>	Call No.:	N IsiO	lo.:	i
	TIM		CHAMBER PRESSURE	BACK PRESSURE	EXTERNAL BURETTE OR	PORE PRESSURE	Δ	8
DATE	CLOSED	OPEN	(PSI)	(PSI)	DIAL RDG. (CC)/(IN.)	(PSI)		
7/15/95	1310	13 [/	0/5	0 4 4 51:0540	.402/.455	0.=/ 1-1	1.1	
	1328	1329	5/10	0 9/9	-451 -441	4.0 / 5.4	1.41	
	1339	1340	10/15	0 14/14 CLO SAO	441 - 434	9.0/11.0	Z.e/ /5	
	1347	1348	15/20	0 19/19	-434/ 429	14.0/ 15.7	2.7/5	
	1351	1352	20/25	0 24/24	-429/-425	19.0/ 2211	3.1/5	
	1356	1357	25/30	0 29/29	-425/ -422	24.0/27.7	3.7/	
	1421	1422	30/35	034/34 CLOSKS	-421/.418	29.0/33.9	4.9/5	
			35/41	CLOSES	-418 -415			
7/15/95	1476	0	41	0 34/34	415/			
7/14	0808		41	0 34/31	-361 / 15.3			
//	0849				14.3			
	1201				12.0			
	1228	İ			11.7	-		
	1302				11.4			
	/317				11.3			
	1341	24			1 / 11.1			
<u> </u>	1418	37			10.8			
7/17	0732	1034			43			
., 1 1	0812	40			4.0			
							-	
							Ì	
						/		
		4		•	1 /	/	1	

Page Z of 3

PERMEABILITY TEST BY BACK PRESSURE CONSTANT-HEAD

C. P. Clare Chicago Il.

Boring SB-50 shelby tube # 4 at 8-10 feet

Wet Density pcf Dry density pcf % Moisture	99.2	124.9 99.8	
Initial dial	2.416 4.582 253.24 0.686 0.69 -0.462		244.7 Wet soil and dish 201.4 Dry soil and dish 43.3 dish only 512.6 Ws Initial 503.6 Final Ws 402.4 Weight solids
Height Final Diameter Final Area Final	3.366 2.410 4.559	8.550 29.435	cm cm^2
Volume Final Height change			
cc/in reser. Volume change Cell Change	0.011 9.18182	@ 41 psi	
Net Volume Change h= T/B PREss. diff	-1.58182	_	

Elapsed Time		K
minutes	cc's	cm/sec
24.0	0.20	1.79E-07
37.0	0.30	1.74E-07
1034.0 40.0	6.50 0.30	1.35E-07 1.61E-07
	Time minutes 24.0 37.0 1034.0	Time minutes cc's 24.0 0.20 37.0 0.30 1034.0 6.50

| K Average = 1.62E-07 cm/s |

SPECIFIC GRAVITY TEST

JOB NO. 30413-001-05000WNER CP Clair

TESTED BY 24 DATE 7/17/9 =

	1	V= 50	7 7 7
DETERMINATION NO.	9-10	6-10°	50 2
	5	7	
FLASK NO.			10171
WT. FLASK + WATER + SOIL , W 1	706.43	707.06	684.74
TEMPERATURE IN °C, T.	21°	21°	21.50
WT. FLASK+WATER, W 2	680.80	683.00	660.60
DISH NO.	C-2	F	C-1
WT. DISH+DRY SOIL	501.30	577.03	574.21
WT. DISH	540.95	539.63	536.24
WT. SOIL, Ws	40.43	37.40	37.57
SPECIFIC GRAVITY OF WATER AT T, GT	.9998	.9998	.9997
SPECIFIC GRAVITY OF SOIL, Gs	2.73	2.80	2.81

REMARKS

$$G_s = \frac{G_T W_s}{W_s + W_2 - W_1}$$

SPECIFIC GRAVITY TEST

JOB NO. <u>20413-001</u> OWNER <u>C.P. CL412E</u>

TESTED BY <u>P.H.</u> DATE 7/17/9 =

	150 10		
DETERMINATION NO.	5B-49 4-6'	SB-47 A-6'	6-6
FLASK NO.	2	3	4
WT. FLASK + WATER + SOIL , W:	701.32	660.31	701.52
TEMPERATURE IN °C, T.	21°	21°	21°
WT. FLASK+WATER, W 2	68317	CAD.96	LB2.29
DISH NO.	C	Z	
WT. DISH+DRY SOIL	800.39	451.90	249.72
WT. DISH	771.94	422.32	219.55
WT. SOIL, Ws	28.45	29.58	30 18
SPECIFIC GRAVITY OF WATER AT T, GT	.9998	.9998	.9998
SPECIFIC GRAVITY OF SOIL, G=	2.76	2.89	2.83

REMARKS

 $G_s = \frac{G_T W_s}{W_s + W_2 - W_1}$

IENT CONTRACTOR	つける	MOISTURE /
了了	<u>}</u>	ND
	Dames & Moore	AND DENSITY
JOB NO. 2 THIS IS	B	DE LEXMINATIONS

JOB NO. 20415-001

,Ł

								5
	BORING	SB-49	5B-47	3B4B	SB 50		 	LOCATION
u	SAMPLE NO.							Š
TYPE	SAMPLE DEPTH	4-6	4.6	6.8	2-4			
SOIL	DATE SAMPLED BY]
65		일H 기기95			and the second second			
SAMPLE	SOIL TYPE	11.11.52						
"	LABORATORY IDENTIFICATION							- 1
	NO. OF RINGS	3.93"	4.02	3.67	4.12			
	WT. OF WET SOIL & RINGS	2.82"					 	1:
		1	1150.3	1102.2	1202.0	 	 	
DENSITY	WT. OF RINGS TUBE	304.2	289.6	280.2	320,4	 	 	
O E N	WT. OF WET SOIL					 	 	-
	WET DENSITY (LBS./CU.FT.)	128.4	130.5	129.5	130.5		 	-
	DRY DENSITY (LBS./CU.FT.)	102	104	102	104			
	DISH NO.	ST-22	700	95	301		***************************************	PAGE
	WT. OF WET SOIL & DISH	325.9	417.4	360.2	392.9		 	m C
CONTENT	WT. OF DRY SOIL & DISH	282.5	1	307.3	1	 	 	
- 1	NET LOSS OF MOISTURE					 	 	9
PRUT PRO	WT. OF DISH	112.1	1035	100.4	14-9	 ,	 	
3	WT. OF DRY SOIL							_
	MOISTURE CONTENT (% DRY WT.	255	25.2	26.6	25.6			

¥

(

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233

21 July 1995

Ms. Gail Artrip **DAMES & MOORE**1701 Golf Road Suite 1000

Rolling Meadows, IL 60008

Dear Ms. Artrip:

Enclosed are the analytical results in support of the project identified as "CP Clare / 30413-001". Samples were received by First Environmental Laboratories on July 11, 1995. Analysis performed was TOC as instructed on the enclosed chain of custody record.

Project Summary

Analyses were performed using guidelines established by methods from SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," 3rd Edition, July 1992. The specific method references are included in the actual report.

These samples were subcontracted to a laboratory approved by First Environmental Laboratories, Inc. Results for soil analysis are reported on a wet weight basis. The percent total solids for each sample has been listed for reference purposes.

Samples SB-50 (6'-8') and SB-48 (4'-6') have "greater than" reporting limits. The instrument used to perform the analysis uses a "boat" sample introduction device. Even though the smallest sample weight measurable was used to perform the analysis the instruments capacity was exceeded.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at 708-778-1200.

Sincerely,

Lorrie Franklin Project Manager

Lerrie Franklin

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233

Analytical Report

Client:

DAMES & MOORE

Date Received:

07/12/95

Project ID:

C.P. Clare - 30413-001

Date Taken:

07/11/95

Date Reported:

07/21/95

TOC Method 9060

Date Analyzed

07/20/95

Sample #	<u>Description</u>	TOC mg/kg	Total Solids %
18742	SB-47 (2'-4')	14,500	82.22
18743	SB-47 (8'-10')	41,400	77.97
18744	SB-50 (6'-8')	>60,000	78.16
18745	SB-48 (4'-6')	>60,000	79.54
18746	SB-49 (2'-4')	24,100	81.23
18747	SB-49 (6'-8')	38,700	81.32

Appendix D Tier 2 Soil Remediation Objectives Spreadsheets

SSL for INHALATION OF CARCINOGENIC CONTAMINANTS RESIDENTIAL LAST REVISED ON 15 SEPTEMBER 1997 BY JS

Peoples Gas Site = P\50\00 Date = Contaminant of concern = vinvl chloride Site Scenario = RESIDENTIAL CALCULATED SSL (mg/kg)= 0.477928647 925-8717974 Calculated Csat (mg/kg) = Where: TR = 1.00E-0b (default) 70 (default) ATc (yr) =8.40E-05 (toxicological specific value, in m3/ug) URF = (default by site scenario) EF (d/vr) =350 ED (yr)= (default by site scenario) 30 VF = 16498.35879 (calculated--see parameters below: in m3/kg) Derivation of Volatilization Factor (VF) 68.81 (default by site scenario, in (g/m2s)/(kg/m3)) Q/C = 950000000 (default by site scenario) 4.65138E-05 (calculated, in cm2/s) Air-filled soil porosity = 0.054379562 (calculated in Lair/Lsoi 0.106 (chemical specific in cm2/s) 0.422145329 (calculated in Lpore/Lsoil) n = 0.252 (site specific in g/g) 1.67 (site specific in g/cm3) Dry soil bulk density = 2.89 (site specific in g/cm3) Soil particle density = 1.11 (chemical specific) H' = 0.269? (calculated in cm3/g) Kd = Koc = 18.6 (chemical specific in cm3/g) 0.0145 (site specific in g/g) foc = 1760 (chemical specific in mg/L) Water-filled soil por. = 0.367765767 (calculated in Lwater/Ls 1.23E-06 (chemical specific in cm2/s) 0.3 I = (default) A (default by soil type, APPENDIX C TABLE K, in m/ Ks = 0.042 (default by soil type, APPENDIX C TABLE K)

1/(26+3)=

SSL for INHALATION OF CARCINOGENIC CONTAMINANTS RESIDENTIAL LAST REVISED ON 15 SEPTEMBER 1997 BY JS

Peoples Gas Site = F\50\00 Date = trichloroethene Contaminant of concern = Site Scenario = RESIDENTIAL CALCULATED SSL (mg/kg)= 90.49779267 2905.056489 Calculated Csat (mg/kg) = Where: TR = 1.00E-Ob (default) ATc (yr) =70 (default) 1.74E-Ob (toxicological specific value, in m3/ug) URF = (default by site scenario) EF (d/yr) =350 (default by site scenario) ED (yr) =30 64712.12024 (calculated--see parameters below, in m3/kg) Derivation of Volatilization Factor (VF) 68.81 (default by site scenario, in (g/m2s)/(kg/m3)) Q/C = 950000000 (default by site scenario) T(s) =3.02338E-06 (calculated, in cm2/s) 0.054379562 (calculated in Lair/Lsoi Air-filled soil porosity = 0.079 (chemical specific in cm2/s) 0.422145329 (calculated in Lpore/Lsoil) n = 0.252 (site specific in g/g) 1.67 (site specific in g/cm3) Dry soil bulk density = 2.89 (site specific in g/cm3) Soil particle density = H' = 0.422 (chemical specific) 2.407 (calculated in cm3/g) Kd = 1666 (chemical specific in cm3/g) Koc = 0.0145 (site specific in g/g) foc = 1100 (chemical specific in mg/L) 0.367765767 (calculated in Lwater/Ls Water-filled soil por. = 9-10E-06 (chemical specific in cm2/s) I = (default) 0.3 Ks =

0.042 (default by soil type, APPENDIX C TABLE K)

1/(26+3)=

SSL for INHALATION OF CARCINOGENIC CONTAMINANTS RESIDENTIAL LAST REVISED ON 15 SEPTEMBER 1997 BY JS

Peoples Gas Site = P\50\00 Date = tetrachloroethene Contaminant of concern = Site Scenario = RESIDENTIAL 573·303339P CALCULATED SSL (mg/kg)= 498.4542463 Calculated Csat (mg/kg) = Where: 1.00E-06 (default) TR = ATc (yr)= 70 (default) 5.80E-07 (toxicological specific value, in m3/ug) (default by site scenario) EF (d/yr) =350 ED (yr)= (default by site scenario) 30 50842.16445 (calculated--see parameters below, in m3/kg) Derivation of Volatilization Factor (VF) Q/C = 68.81 (default by site scenario₁ in (g/m2s)/(kg/m3)) 950000000 (default by site scenario) T(s) =4.89796E-06 (calculated, in cm2/s) D.D54379562 (calculated in Lair/Lsoi Air-filled soil porosity = 0.072 (chemical specific in cm2/s) D.422145329 (calculated in Lpore/Lsoil) n = 0.252 (site specific in g/g) 1:67 (site specific in g/cm3) Dry soil bulk density = 2.89 (site specific in g/cm3) Soil particle density = 0.754 (chemical specific) H' = 2.2475 (calculated in cm3/g) Kd = 155 (chemical specific in cm3/g) Koc = 0.0145 (site specific in g/g) foc = 200 (chemical specific in mg/L) Water-filled soil por. = 0.367765767 (calculated in Lwater/Ls 8.20E-06 (chemical specific in cm2/s) I = 0.3 (default) B (default by soil type₁ APPENDIX C TABLE K₁ in m/

1/(2b+3) = 0.042 (default by soil type, APPENDIX C TABLE K)

Ks =

```
SSL for INHALATION OF CARCINOGENIC CONTAMINANTS INDUSTRIAL/COMMERCIAL
            LAST REVISED ON 15 SEPTEMBER 1997 BY JS
           Peoples Gas
Site =
                5/23/01
Date =
                                   vinyl chloride
Contaminant of concern =
                      INDUSTRIAL/COMMERCIAL
Site Scenario =
CALCULATED SSL (mg/kg)=
                                      PAA.O
                                     925.872
(alculated Csat (mg/kg) =
Where:
  TR =
           1.00E-0b (default)
ATc (yr) =
                70
                       (default)
URF =
             8.40E-05 (toxicological specific value, in m3/ug)
                       (default by site scenario)
EF (d/yr) =
                250
                        (default by site scenario)
ED (yr) =
                25
            18271-97115 (calculated--see parameters below, in m3/kg)
VF =
Derivation of Volatilization Factor (VF)
Q/C =
                       (default by site scenario, in (g/m2s)/(kg/m3))
               85-81
           790000000 (default by site scenario)
T(s) =
            4.90421E-05 (calculated, in cm2/s)
                                   0.054379562 (calculated in Lair/Lsoi
Air-filled soil porosity =
                      (chemical specific in cm2/s)
               0.106
            0.422145329 (calculated in Lpore/Lsoil)
n =
               0.252 (site specific in g/g)
                                              (site specific in g/cm3)
Dry soil bulk density =
                                       1.67
                                              (site specific in g/cm3)
Soil particle density =
                                       2.89
H' =
               1.11
                      (chemical specific)
Kd =
                       (calculated in cm3/g)
              0.2697
              18.6
                      (chemical specific in cm3/g)
Koc =
foc =
              0.0145 (site specific in g/g)
               1760
                       (chemical specific in mg/L)
                                   0.367765767 (calculated in Lwater/Ls
Water-filled soil por. =
             1.23E-05 (chemical specific in cm2/s)
I =
               0.3
                       (default)
                       (default by soil type, APPENDIX C TABLE K, in m/
                8
Ks =
                       (default by soil type, APPENDIX C TABLE K)
1/(2b+3)= 0.042
```

```
SSL for INHALATION OF CARCINGGENIC CONTAMINANTS INDUSTRIAL/COMMERCIAL
            LAST REVISED ON 15 SEPTEMBER 1997 BY JS
Site =
            Peoples Gas
Date =
                5/23/01
Contaminant of concern =
                                    trichloroethene
                       INDUSTRIAL/COMMERCIAL
Site Scenario =
CALCULATED SSL (mg/kg)=
                                     172.896
                                    2905.056
Calculated Csat (mg/kg) =
Where:
  TR =
            1.00E-0F
                       (default)
                        (default)
ATc (yr) =
                 70
URF =
             1.74E-Ob (toxicological specific value, in m3/ug)
EF (d/yr) =
                250
                        (default by site scenario)
ED (yr) =
                        (default by site scenario)
            73590.83259 (calculated--see parameters below, in m3/kg)
VF =
Derivation of Volatilization Factor (VF)
                        (default by site scenario, in (g/m2s)/(kg/m3))
Q/C =
               85-81
T(s) =
            79000000 (default by site scenario)
            3.02338E-06 (calculated, in cm2/s)
Air-filled soil porosity =
                                    D.054379562 (calculated in Lair/Lsoi
                        (chemical specific in cm2/s)
               0.079
n =
            0.422145329 (calculated in Lpore/Lsoil)
               D-252 (site specific in g/g)
                                               (site specific in g/cm3)
Dry soil bulk density =
                                        1.67
                                               (site specific in g/cm3)
Soil particle density =
                                        2.89
H' =
               0.422 (chemical specific)
               2.407
Kd =
                        (calculated in cm3/q)
Koc =
                        (chemical specific in cm3/g)
               166
foc =
              0.0145
                        (site specific in g/g)
               1100
                        (chemical specific in mg/L)
                                    0.367765767 (calculated in Lwater/Ls
Water-filled soil por. =
             9.10E-06 (chemical specific in cm2/s)
                0.3
                       (default)
I =
Ks =
                 8
                        (default by soil type, APPENDIX C TABLE K, in m/
```

(default by soil type, APPENDIX C TABLE K)

1/(2b+3)=

0.042

```
SSL for INHALATION OF CARCINOGENIC CONTAMINANTS INDUSTRIAL/COMMERCIAL
            LAST REVISED ON 15 SEPTEMBER 1997 BY JS
           Peoples Gas
Site =
                5/23/01
Date =
Contaminant of concern =
                                   tetrachloroethene
                       INDUSTRIAL/COMMERCIAL
Site Scenario =
CALCULATED SSL (mg/kg)=
                                      407.516
(alculated (sat (mg/kg) =
                                     498.454
Where:
  TR =
            1.00E-0b (default)
ATc (yr)=
                70
                       (default)
            5.80E-07 (toxicological specific value, in m3/ug)
URF =
EF (d/yr) =
                       (default by site scenario)
                250
                25
                       (default by site scenario)
ED (yr) =
            57817.87397 (calculated--see parameters below, in m3/kg)
VF =
Derivation of Volatilization Factor (VF)
                       (default by site scenario, in (g/m2s)/(kg/m3))
Q/C =
               85.81
            79000000 (default by site scenario)
T(s) =
            4.89796E-06 (calculated, in cm2/s)
                                   0.054379562 (calculated in Lair/Lsoi
Air-filled soil porosity =
                       (chemical specific in cm2/s)
               0.072
            0.422145329 (calculated in Lpore/Lsoil)
n =
               0.252
                       (site specific in q/q)
                                              (site specific in g/cm3)
Dry soil bulk density =
                                       1.67
Soil particle density =
                                       2.89
                                              (site specific in g/cm3)
H' =
                       (chemical specific)
               0.754
Kd =
              2.2475
                       (calculated in cm3/g)
                       (chemical specific in cm3/g)
Koc =
               155
              0.0145
                       (site specific in g/g)
foc =
                200
                       (chemical specific in mg/L)
                                   0.367765767 (calculated in Lwater/Ls
Water-filled soil por. =
             8.20E-06 (chemical specific in cm2/s)
```

I =

Ks =

1/(2b+3)=

0.3

8

0.042

(default)

(default by soil type, APPENDIX C TABLE K, in m/

(default by soil type, APPENDIX C TABLE K)

```
SSL for INHALATION OF CARCINOGENIC CONTAMINANTS BY CONSTRUCTION WORKER
LAST REVISED ON 15 SEPTEMBER 1997 BY JS
```

Site = Peoples Gas
Date = 5/23/01

Contaminant of concern = vinyl chloride

Site Scenario = CONSTRUCTION WORKER

CALCULATED SSL (mg/kg)= 1.284

Calculated Csat (mg/kg) = 925.872

Where:

1/(2b+3)=

TR = 1.00E-0b (default)

ATC (yr)= 70 (default)

URF = 8.40E-05 (toxicological specific value in m3/ug)

EF (d/yr)= 30 (default by site scenario)

ED (yr)= 1 (default by site scenario)

VF' = 12b.6533075 (calculated--see parameters below in m3/kg)

Derivation of Volatilization Factor (VF')

0.042

(default by site scenario, in (g/m2s)/(kg/m3)) Q/C = 85.81 T(s) =3600000 (default by site scenario) 4.65138E-05 (calculated, in cm2/s) Air-filled soil porosity = 0.054379562 (calculated in Lair/Lsoil) (chemical specific in cm2/s) 0.706 0.422145329 (calculated in Lpore/Lsoil) n = **ω** = 0.252 (site specific in g/g) Dry soil bulk density = 1.67 (site specific in g/cm3) (site specific in g/cm3) Soil particle density = 2.89 H' = 1.11 (chemical specific) Kd = 0.2697 (calculated in cm3/g) (chemical specific in cm3/g) Koc = 18.6 0.0145 (site specific in g/g) foc = (chemical specific in mg/L) = 2 1760 0.367765767 (calculated in Lwater/Lsoil) Water-filled soil por. = 1.23E-Ob (chemical specific in cm2/s) 0.3 I = (default) Ks = 8 (default by soil type, APPENDIX C TABLE K, in m/yr)

(default by soil type, APPENDIX C TABLE K)

```
SSL for INHALATION OF CARCINOGENIC CONTAMINANTS BY CONSTRUCTION WORKER LAST REVISED ON 15 SEPTEMBER 1997 BY JS
```

Site = Peoples Gas
Date = 5/23/01

Contaminant of concern = trichloroethene
Site Scenario = CONSTRUCTION WORKER

CALCULATED SSL (mg/kg)= 243.154

Calculated Csat (mg/kg) = 2905.056

Where:

TR = 1.00E-0b (default)

ATC (yr) = 70 (default)

URF = 1.74E-0b (toxicological specific value, in m3/ug)

EF (d/yr) = 30 (default by site scenario)

ED (yr) = 1 (default by site scenario)

VF' = 49b.77b9322 (calculated--see parameters below, in m3/kg)

Derivation of Volatilization Factor (VF')

Q/C = 85.81 (default by site scenario in (g/m2s)/(kg/m3)) T(s) = 360000 (default by site scenario) Da = 3.02338E-06 (calculated in cm2/s) Air-filled soil porosity = 0.054379562 (calculated in Lair/Lsoil) Di = 0.079 (chemical specific in cm2/s)

n = 0.422145329 (calculated in Lpore/Lsoil)

w = 0.252 (site specific in g/g)

Dry soil bulk density = 1.67 (site specific in g/cm3)
Soil particle density = 2.89 (site specific in g/cm3)

H' = 0.422 (chemical specific)

Kd = 2.407 (calculated in cm3/g)

Koc = 166 (chemical specific in cm3/g)

foc = 0.0145 (site specific in g/g)

S = 1100 (chemical specific in mg/L)

Water-filled soil por. = 0.367765767 (calculated in Lwater/Lsoil)

Dw = 9.10E-06 (chemical specific in cm2/s)

I = 0.3 (default)

Ks = A (default by soil type, APPENDIX C TABLE K, in m/yr)

1/(2b+3)= 0.042 (default by soil type, APPENDIX C TABLE K)

```
SSL for INHALATION OF CARCINOGENIC CONTAMINANTS BY CONSTRUCTION WORKER

LAST REVISED ON 15 SEPTEMBER 1997 BY JS
```

Site = Peoples Gas
Date = 5/23/01

Contaminant of concern = tetrachloroethene

Site Scenario = CONSTRUCTION WORKER

CALCULATED SSL (mg/kg) = 573.115

Calculated Csat (mg/kg) = 498.454

Where:

TR = 1.00E-06 (default)

ATc (yr) = 70 (default)

URF = 5.80E-07 (toxicological specific value in m3/ug)

EF (d/yr) = 30 (default by site scenario)

ED (yr) = 1 (default by site scenario)

VF' = 390.301428 (calculated--see parameters below in m3/kg)

Derivation of Volatilization Factor (VF')

Q/C = 85.81 (default by site scenario, in (g/m2s)/(kg/m3)) T(s) =3600000 (default by site scenario) 4.89796E-06 (calculated, in cm2/s) Air-filled soil porosity = 0.054379562 (calculated in Lair/Lsoil) 0.072 (chemical specific in cm2/s) 0-422145329 (calculated in Lpore/Lsoil) n = **w** = 0.252 (site specific in g/g) Dry soil bulk density = 1.67 (site specific in g/cm3) Soil particle density = 2.85 (site specific in q/cm3)

Water-filled soil por. = 0.367765767 (calculated in Lwater/Lsoil)

Dw = 8.20E-06 (chemical specific in cm2/s)

I = 0.3 (default)

Ks = 8 (default by soil type, APPENDIX C TABLE K, in m/yr)

1/(2b+3)= 0.042 (default by soil type, APPENDIX C TABLE K)

Appendix E Phase II Investigation Laboratory Analytical Reports

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233 IEPA Certification #100292

5 September 1996

Ms. Gail Artrip **DAMES & MOORE**1701 Golf Road, Suite 1000

Rolling Meadows, IL 60008

Dear Ms. Artrip:

Enclosed are the analytical results for your project "CP Clare." Samples were received by First Environmental Laboratories on August 30, 1996. Samples were analyzed for volatiles as instructed on the enclosed chain of custody records.

PROJECT SUMMARY

All analyses were performed in accordance with the EPA publication: "<u>Test Methods for Evaluating Solid Waste</u>, <u>Physical/Chemical Methods</u>," SW-846, 3rd Edition, July 1992. The specific method references appear on the analytical reports.

Analyses were performed within established holding times. QA/QC documentation and raw data will remain on file for future reference. The results have been expressed on a dry weight basis per method protocols.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at 630-778-1200.

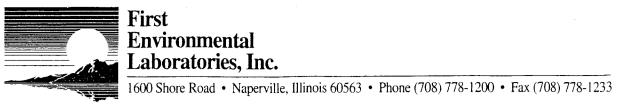
Sincerely,

Lorrie Franklin Project Manager

Love Transfor

First Environmental Laboratories, Inc. 1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233

Project I.D.: C.P. Clare Job #30	413-005	
Dames & Moore	PG-2	
	3.5-4.5'	
First Environmental Lab	22977	
	Date Taken:	1/19/96
Dat	e Received:	1/22/96
Parameters	Detection	Results
	Limits	ug/kg
Volatile Compounds - Method 8	240A	
Date of Analysis:		1/23/96
Matrix		
Dilution Factor	1	10
Acetone	10.0	< 100
Benzene	5.0	123
Bromodichloromethane	5.0	< 50.0
Bromoform	5.0	< 50.0
Bromomethane	10.0	< 100
2-Butanone	10.0	< 100
Carbon disulfide	5.0	< 50.0
Carbon tetrachloride	5.0	< 50.0
Chlorobenzene	5.0	< 50.0
Chlorodibromomethane	5.0	< 50.0
Chloroethane	10.0	< 100
Chloroform	5.0	< 50.0
Chloromethane	10.0	< 100
1,1-Dichloroethane	5.0	< 50.0
1,2-Dichloroethane	5.0	< 50.0
1,1-Dichloroethene	5.0	< 50.0
1,2-Dichloroethene (total)	5.0	< 50.0
1,2-Dichloropropane	5.0	< 50.0
cis-1,3-Dichloropropene	5.0	< 50.0
trans-1,3-Dichloropropene	5.0	< 50.0
Ethyl benzene	5.0	< 50.0
2-Hexanone	10.0	< 100
4-Methyl-2-pentanone	10.0	< 100
Methylene chloride	5.0	< 50.0
Styrene	5.0	< 50.0
1,1,2,2-Tetrachloroethane	5.0	< 50.0
Tetrachloroethene	5.0	< 50.0
Toluene	5.0	2,440
1,1,1-Trichloroethane	5.0	< 50.0
1,1,2-Trichloroethane	5.0	< 50.0
Trichloroethene	5.0	< 50.0
Vinyl Acetate	10.0	< 100
Vinyl Chloride	10.0	49,500
Xylenes (total)	5.0	221


Project I.D.: C.P. C			
Dai	Sample ID:	PG-2	
		Depth:	3.5-4.5'
First Envir	onmental Lab	Sample ID:	22977
		Date Taken:	1/19/96
	Da	te Received:	1/22/96
		Matrix:	Soil
Parameters	Method	Detection	Results
		Limits	mg/kg
Chromium	6010A	0.1	22.2
Lead	6010A	0.1	15.3
Mercury	7470	0.05	< 0.05
			Results
			%
Solids, Total			79.86

Project I.D.:						
Dames & Moore	PG1	PG1	PG2	PG2	PG3	
	Depth:	8-10'	18-20'	10-12'	14-16'	10-12'
First Environmental Lab	Sample ID:	23140	23141	23142	23143	23144
· ·	Date Taken:	1/26/96	1/26/96	1/26/96	1/26/96	1/26/96
Dat	e Received:	1/29/96	1/29/96	1/29/96	1/29/96	1/29/96
Parameters	Detection	Results	Results	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 8	240A		<u> </u>			
Date of Analysis:		2/2/96	2/2/96	2/2/96	2/2/96	2/1/96
Matrix		Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1	50
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
Benzene	5.0	< 50	< 5.0	< 5.0	< 5.0	< 50.0
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
Carbon disulfide	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
1,1-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
1,2-Dichloroethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 50.0
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
1,2-Dichloroethene (total)	5.0	1,050	< 5.0	12.6	< 5.0	1,510
1,2-Dichloropropane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Ethyl benzene	5.0	< 50	< 5.0	< 5.0	< 5.0	< 50.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	200
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0
Trichloroethene	5.0	< 5.0	< 50	< 5.0	< 5.0	55,400
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 100
Vinyl Chloride	10.0	1,070	< 10.0	694	< 10.0	< 100
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50.0

Project I.D.:CP Clare #30413-00)5					
Dames & Moore	PG3	PG3	PG4	PG5	PG5	
	Depth:	14-16'	23-25'	14-16'	10-12'	18-20'
First Environmental Lab	Sample ID:	23145	23146	23147	23148	23149
\$	Date Taken:	1/26/96	1/26/96	1/26/96	1/26/96	1/26/96
Dat	te Received:	1/29/96	1/29/96	1/29/96	1/29/96	1/29/96
Parameters	Detection	Results	Results	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 8	240A					
Date of Analysis:		2/1/96	2/2/96	2/2/96	2/2/96	2/2/96
Matrix		Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	50	1	1	1	1
Acetone	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromodichloromethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 50.0	< 5.0	< 5.0	< 50	< 5.0
Carbon tetrachloride	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloromethane	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethene (total)	5.0	1,280	< 5.0	< 5.0	1,060	< 5.0
1,2-Dichloropropane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5.0	< 50.0	< 5.0	< 50	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 50.0	< 5.0	< 50	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	39,100	< 5.0	< 5.0	< 5.0	< 5.0
Vinyl Acetate	10.0	< 100	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 100	< 10.0	< 10.0	297	< 10.0
Xylenes (total)	5.0	< 50.0	< 5.0	< 5.0	< 5.0	< 5.0

Project I.D.: CP	Clare #30413	-005						
Da	mes & Moore	Sample ID:	PG1	PG1	PG2	PG2	PG3	PG3
		Depth:	8-10'	18-20'	10-12'	14-16'	10-12'	14-16'
First Envi	ronmental Lab	Sample ID:	23140	23141	23142	23143	23144	23145
		Date Taken:	1/26/96	1/26/96	1/26/96	1/26/96	1/26/96	1/26/96
	Date Received:			1/29/96	1/29/96	1/29/96	1/29/96	1/29/96
		Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Parameters	Method	Detection	Results	Results	Results	Results	Results	Results
		Limits	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Chromium	6010A	0.1	21.2	17.5	18.9	20.6	22.1	21.6
Lead	6010A	0.1	15.5	15.2	15.8	14.0	15.2	15.7
Mercury	7470	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Project I.D.: CP	Clare #30413	-005				
Dar	mes & Moore	Sample ID:	PG3	PG4	PG5	PG5
		Depth:	23-25'	14-16'	10-12'	18-20'
First Envi	ronmental Lab	Sample ID:	23146	23147	23148	23149
	Date Taken:			1/26/96	1/26/96	1/26/96
i	Date Received:			1/29/96	1/29/96	1/29/96
		Matrix:	Soil	Soil	Soil	Soil
Parameters	Method	Detection	Results	Results	Results	Results
		Limits	mg/kg	mg/kg	mg/kg	mg/kg
Chromium	6010A	0.1	22.2	19.4	18.6	15.4
,Lead	6010A	0.1	14.2	14.0	14.7	14.3
Mercury	7470	0.05	< 0.05	< 0.05	< 0.05	< 0.05

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233

DAMES & MOORE

Project I.D.:CP Clare 30413-005

Sample #	D&M Sample ID	% Total Solids
23140	PG1 8-10'	80.78
23141	PG1 18-20'	80.21
23142	PG2 10-12'	82.82
23143	PG2 14-16'	78.51
23144	PG3 10-12'	80.02
23145	PG3 14-16'	79.44
23146	PG3 23-25'	76.37
23147	PG4 14-16'	82.60
23148	PG5 10-12'	82.19
23149	PG5 18-20'	80.13

Project I.D.:CP Clare #30413-00	5					
Dames & Moore	PG6	PG6	PG7	PG7	PG8	
	Depth:	9-11'	13-15'	7-9'	13-15'	11-13'
First Environmental Lab	Sample ID:	23107	23108	23109	23110	23111
II	Date Taken:	1/25/96	1/25/96	1/25/96	1/25/96	1/25/96
Dat	e Received:	1/26/96	1/26/96	1/26/96	1/26/96	1/26/96
Parameters	Detection	Results	Results	Results	Results	Results
2	Limits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 8	240A					
Date of Analysis:		2/1/96	2/1/96	2/1/96	2/1/96	2/1/96
Matrix		Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1	1
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethene (total)	5.0	< 5.0	62.2	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	75.5	< 10.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0

Project I.D.:CP Clare #30413-00)5			
Dames & Moore	PG8	PG9	PG9	
	18-20'	11-13'	23-25'	
First Environmental Lab	23112	23113	23114	
l .	Date Taken:	1/25/96	1/25/96	1/25/96
Dat	te Received:	1/26/96	1/26/96	1/26/96
Parameters	Detection	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 8	240A			
Date of Analysis:		2/1/96	2/1/96	2/1/96
Matrix		Soil	Soil	Soil
Dilution Factor	1	1	1	1
Acetone	10.0	< 10.0	< 10.0	< 10.0
Benzene	5.0	< 5.0	< 5.0	< 5.0
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 50
Bromomethane	10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 50	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 5.0	< 5.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethene (total)	5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 50	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0
Toluene	5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	< 5.0	< 5.0	< 5.0
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0

Project I.D.: CP	Clare #30413-	-005						
Da	mes & Moore	Sample ID:	PG6	PG6	PG7	PG7	PG8	PG8
		Depth:	9-11'	13-15'	7-9'	13-15'	11-13'	18-20'
! First Envi	ronmental Lab	• 1	23107	23108	23109	23110	23111	23112
		Date Taken:	1/25/96	1/25/96	1/25/96	1/25/96	1/25/96	1/25/96
	Date Received:			1/26/96	1/26/96	1/26/96	1/26/96	1/26/96
		Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Parameters	Method	Detection	Results	Results	Results	Results	Results	Results
1		Limits	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Chromium	6010A	0.1	20.7	19.9	18.5	18.6	19.1	17.6
Lead	6010A	0.1	15.3	13.4	14.7	13.6	14.4	12.9
Mercury	7470	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

D	CI #20412	005		
Project I.D.: CP				
Dai	nes & Moore	Sample ID:	PG9	PG9
1		Depth:	11-13'	23-25'
First Envir	onmental Lab	Sample ID:	23113	23114
		Date Taken:	1/25/96	1/25/96
1	Dat	1/26/96	1/26/96	
I		Matrix:	Soil	Soil
Parameters	Method	Detection	Results	Results
		Limits	mg/kg	mg/kg
Chromium	6010A	0.1	18.6	9.6
Lead	6010A	0.1	13.7	7.7
Mercury	7470	0.05	< 0.05	< 0.05

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233

DAMES & MOORE

Project I.D.:CP Clare 30413-005

Sample #	D&M Sample ID	% Total Solids
23107	PG6 9-11'	80.18
23108	PG6 13'15'	83.14
23109	PG7 7-9'	82.66
23110	PG7 13-15'	81.18
23111	PG8 11-13'	79.42
23112	PG8 18-20'	80.21
23113	PG9 11-13'	79.07
23114	PG9 23-25'	87.04

Project I.D.: C.P. Clare (Kedzie	& Pratt)				
Dames & Moore		PG-11	PG-11	PG-10	PG-13
	Depth	3-5'	9-11'	9-11'	9-11'
First Environmental Lab	Sample ID:	29240	29241	29242	29350
	Date Taken:	08/21/96	08/21/96	08/21/96	08/21/96
Date	08/26/96	08/26/96	08/26/96	08/28/96	
Parameters	Detection	Results	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 82	260A				
Date of Analysis:		08/28/96	08/28/96	08/28/96	08/28/96
Matrix		Soil	Soil	Soil	Soil
Dilution Factor	1	1	11	1	20
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 200
Benzene	5.0	6.8	5.2	< 5.0	< 100
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 100
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 100
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 200
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 200
Carbon disulfide	5.0	5.3	< 5.0	< 50	< 100
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 100
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 100
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 100
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 200
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 100
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 200
1,1-Dichloroethane	5.0	< 5.0	< 50	< 5.0	< 100
1,2-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 100
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 100
cis-1,2-Dichloroethene	5.0	232	32.5	20.4	1,650
trans-1,2-Dichloroethene	5.0	30.2	8.6	< 5.0	108
1,2-Dichloropropane	5.0	< 5.0	< 5.0	< 5.0	< 100
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 100
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 100
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 100
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 200
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 200
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 100
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 100
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 100
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0	41,400
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 100
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 100
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 100
Trichloroethene	5.0	< 5.0	7.5	< 5.0	7,380
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 200
Vinyl Chloride	10.0	141	59.3	< 10.0	< 200
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 100

Project I.D.: C.P. Clare (Kedzie & Pratt)							
Dames & Moore		PG-13	PG-13	PG-13	PG-12	PG-12	
	Depth:	3-5	11-13	13-15	9-11	11-13	
First Environmental Lab	•	29172	29173	29174	29175	29176	
	Date Taken:	8/21/96	8/21/96	8/21/96	8/21/96	8/21/96	
Dat	e Received:	8/22/96	8/22/96	8/22/96	8/22/96	8/22/96	
Parameters	Detection	Results	Results	Results	Results	Results	
	Limits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Volatile Compounds - Method 8	260A						
Date of Analysis:		8/24/96	8/24/96	8/24/96	8/24/96	8/24/96	
Matrix		Soil	Soil	Soil	Soil	Soil	
Dilution Factor	1	1	1	1	1	1	
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Bromodichloromethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Carbon disulfide	5.0	< 5.0	< 5.0	< 5.0	9.9	< 5.0	
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50	
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
1,1-Dichloroethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	
1,2-Dichloroethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
cis-1,2-Dichloroethene	5.0	4,230	< 5.0	< 5.0	25.7	29.4	
trans-1,2-Dichloroethene	5.0	355	< 5.0	< 5.0	< 5.0	< 5.0	
1,2-Dichloropropane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	
cis-1,3-Dichloropropene	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0	
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
4-Methyl-2-pentanone	. 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Tetrachloroethene	5.0	24,600	< 5.0	47.6	< 5.0	< 5.0	
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Trichloroethene	5.0	3,960	< 5.0	8.0	3,820	281	
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Vinyl Chloride	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	

Project I.D.: C.P. Clare (Kedzie					
Dames & Moore	Sample ID:	PG-11	PG-11	PG-10	PG-10
	Depth:	1-3	7-9	1-3	3-5
First Environmental Lab	Sample ID:	29177	29178	29179	29180
	8/21/96	8/21/96	8/21/96	8/21/96	
Dat	e Received:	8/22/96	8/22/96	8/22/96	8/22/96
Parameters	Detection	Results	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 8	260A				
Date of Analysis:		8/24/96	8/24/96	8/24/96	8/24/96
Matrix		Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1
Acetone	10.0	100	< 10.0	< 10.0	< 10.0
Benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	17.4	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	5.8	5.1	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 50	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 5.0	< 5.0	17.5
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 5.0	< 5.0	48.2	24.1
1,2-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,2-Dichloroethene	5.0	18.6	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0	28.8
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	31.2	13.3
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	8.4	< 5.0	< 5.0	11.6
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	6.3 J	18.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233 IEPA Certification #100292

DAMES & MOORE

Project I.D.: CP Clare (Kedzie & Pratt)

Sample #	Description	% Total Solids
29172	PG-13 3-5	81.09
29173	PG-13 11-13	81.27
29174	PG-13 13-15	79.59
29175	PG-12 9-11	80.20
29176	PG-12 11-13	79.88
29177	PG-11 1-3	77.73
29178	PG-11 7-9	86.52
29179	PG-10 1-3	84.29
29180	PG-10 3-5	77.92

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233 IEPA Certification #100292

DAMES & MOORE

Project I.D.: C.P. Clare (Kedzie & Pratt)

Sample #	D&M Sample ID	% Total Solids
29240	PG-11 3-5	82.86
29241	PG-11 9-11	84.24
29242	PG-10 9-11	85.69
29350	PG-13 9-11	69.95

Project I.D.: CP Clare						
Dames & Moore	Sample ID:	PG 14	PG 14	PG 15	PG 15	PG 15
	Depth	3-5'	5-7'	3-5'	5-7'	7-9'
First Environmental Lab	-	29469	29470	29471	29472	29473
	Date Taken:	08/30/96	08/30/96	08/30/96	08/30/96	08/30/96
I .	te Received:	08/30/96	08/30/96	08/30/96	08/30/96	08/30/96
Parameters	Detection	Results	Results	Results	Results	Results
	Limits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Volatile Compounds - Method 82	260A					
Date of Analysis:		09/04/96		09/04/96	09/04/96	09/04/96
Matrix		Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1	1
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	5.0	5.6	< 5.0	< 5.0	5.2	< 5.0
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 5.0	< 5.0	14.9	< 5.0
cis-1,2-Dichloroethene	5.0	101	567	1,420	5,740	51.6
trans-1,2-Dichloroethene	5,0	6.2	102	314	170	< 5.0
1,2-Dichloropropane	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	10.0	< 10 0	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	8.8	19.0	2,120	28,200	8.3
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	18.4	24.2	1,260	9,510	112
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Project I.D.: CP Clare			
Dames & Moore	Sample ID:	PG 16	PG 16
	Depth:	1-3'	3-5'
First Environmental Lab	Sample ID:	29474	29475
	Date Taken:	08/30/96	08/30/96
Da	08/30/96	08/30/96	
Parameters	Detection	Results	Results
	ug/kg	ug/kg	
Volatile Compounds - Method 82	60A		
Date of Analysis:		09/04/96	09/04/96
Matrix		Soil	Soil
Dilution Factor	1	1	1
Acetone	10.0	< 10.0	< 10.0
Benzene	5.0	18.2	< 5.0
Bromodichloromethane	5.0	< 50	< 5.0
Bromoform	5.0	< 5.0	< 5.0
Bromomethane	10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 50	< 5.0
Chlorodibromomethane	5.0	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0
Chloroform	5.0	< 50	< 5.0
Chloromethane	10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	< 5.0	< 5.0
1,2-Dichloroethane	5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	52.5
cis-1,2-Dichloroethene	5.0	68.8	22,600
trans-1,2-Dichloroethene	5.0	24.6	1,810
1,2-Dichloropropane	5.0	< 50	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 50	< 5.0
Ethyl benzene	5.0	< 50	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 50
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 50
Tetrachloroethene	5.0	150	2,810
Toluene	5.0	8.3	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0
Trichloroethene	5.0	140	2,410
Vinyl Acetate	10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	713
Xylenes (total)	5.0	< 5.0	< 5.0

1600 Shore Road • Naperville, Illinois 60563 • Phone (708) 778-1200 • Fax (708) 778-1233 IEPA Certification #100292

DAMES & MOOREProject L.D.: CP Clare

Sample #	D&M Sample ID	% Total Solids
29469	PG 14 3-5'	82.84
29470	PG 14 5-7'	80.91
29471	PG 15 3-5'	82.89
29472	PG 15 5-7'	80.92
29473	PG 15 7-9'	85.67
29474	PG 16 1-3'	88.88
29475	PG 16 3-5'	81.57

Project I.D.: 30413-002 (CP Clare)						
Dames & Moo		PG-19	PG-20	PG-20	PG-21	PG-21
	Depth	19'-21'	3'-5'	17'-19'	3'5'	15'-17'
First Environmental L	First Environmental Lab Sample ID:		47745	47746	47747	47748
	Date Taken:	12/12/97	12/12/97	12/12/97	12/12/97	12/12/97
Date Received:		12/12/97	12/12/97	12/12/97	12/12/97	12/12/97
Parameters		Results	Results	Results	Results	Results
Volatile Compounds - Method	d 8260A - unit	s (ug/kg)				
Date of Analysis:		12/18/97	12/18/97	12/18/97	12/18/97	12/18/97
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1	1
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50
Bromodichloromethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 50	< 50	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	5.0	< 50	< 5.0	< 50	< 5.0	< 50
Chlorobenzene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1, 1-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0
1,2-Dichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
cis-1,2-Dichloroethene	5.0	24.3	66.1	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	5.0	< 5.0	11.3	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	5.0	< 5.0	< 50	< 5.0	< 50	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 5.0	< 50	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 50	< 5.0	< 50	< 5.,0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1, 1,2,2-Tetrachloroethane	5.0	< 5.0	< 50	< 5.0	< 50	< 5.0
Tetrachloroethene	5.0	< 5.0	29.5	< 5.0	< 5.0	< 5.0
Toluene	5.0	< 5.0	< 50	< 50	< 5.0	< 50
1,1,1-Trichloroethane	5.0	< 50	< 5.0	< 50	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	< 50	46.1	< 50	< 50	< 50
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Project I.D.: 30413-002 (CP Clare)						
Dames & Moo		PG-17	PG-17	PG-18	PG-18	PG-19
	Depth	2'-4'	16'-18'	3'-5'	17'-19'	3'-5'
First Environmental L	ab Sample ID	47739	47740	47741	47742	47743
	Date Taken:	12/12/97	12/12/97	12/12/97	12/12/97	12/12/97
Date Received:		12/12/97	12/12/97	12/12/97	12/12/97	12/12/97
Parameters		Results	Results	Results	Results	Results
Volatile Compounds - Method	1 8260A - unit:	s (ug/kg)				
Date of Analysis:		12/17/97	12/17/97	12/17/97	12/17/97	12/18/97
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Dilution Factor	1	1	1	1	1	1
Acetone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	50	< 50	< 5.0	< 5.0	< 50	< 5.0
Bromodichloromethane	5.0	< 50	< 5.0	< 5.0	< 50	< 5.0
Bromoform	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50
Bromomethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Butanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Carbon disulfide	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50
Carbon tetrachloride	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	< 50	< 5.0	< 5.0	< 5.,0	< 50
Chlorodibromomethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5,0
Chloroethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	5.0	< 5.0	< 50	< 50	< 5.0	< 5.0
Chloromethane	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	5.0	18.4	< 5.0	< 50	< 5.0	< 50
1,2-Dichloroethane	5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5.0	< 5.0	< 50	< 5.0	< 5.0	< 50
cis-1,2-Dichloroethene	5.0	128	16.7	55.7	1,150	121
trans-1,2-Dichloroethene	5.0	20.8	< 5.0	9.4	< 5.0	21.9
1,2-Dichloropropane	5.0	< 5.0	< 50	< 50	< 50	< 5.0
cis-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethyl benzene	5.0	< 5.0	< 5.0	< 50	< 5.0	< 5.0
2-Hexanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylene chloride	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5.0	< 5.0	< 50	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 50
Trichloroethene	5.0	61,1	9,750	39.6	11,600	21.3
Vinyl Acetate	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Vinyl Chloride	10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes (total)	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

First
Environmental
Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233
IEPA Certification #100292

DAMES & MOORE

Project I.D.: 29278-006

Sample #	D&M Sample ID	% Total Solids
47739	PG-17 (2'-4')	80.14
47740	PG-17 (16'-18')	79.17
47741	PG-18 (3'-5')	80.99
47742	PG-18 (17'-19')	80.90
47743	PG-19 (3'-5')	82.17
47744	PG-19 (19'-21')	78.73
47745	PG-20 (3'-5')	80.97
47746	PG-20 (17'-19')	80.23
47747	PG-21 (3'-5')	82.44
47748	PG-21 (15'-17')	75.90

Appendix F Excavation Confirmatory Sampling Lab Analytical Reports

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

148978

Report Date: 9/18/96 Sample Received: 9/16/96

Dames & Moore

One Court Towers/1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project No.: 30413-002

Project Name: CP Clare/Chicago Sample Description: Soil, E019

Sample No.: 63327

		Concenti	ation	Method Detection	Quantitation
	Compound	Found	In	Limit (MDL)	Limit
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	<0.5	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
7	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
a	Chloroform	<0.5	<0.5	0.5	5 5
	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13	1,2-Dichloroethene (total)	26.9	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5 5
17	Ethylbenzene	<0.6	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5 5
10.	methylene Chioride	~0.0	70.0	0.0	Ŭ
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lest E. Zeles

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

148978

Report Date: 9/18/96 Sample Received: 9/16/96

Dames & Moore

One Court Towers/1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project No.: 30413-002

Project Name: CP Clare/Chicago Sample Description: Soil, E019

Sample No.: 63327

	Compound	Concentration Found In		Method Detection Limit (MDL)	Quantitation Limit
	<u>Purgeables</u>	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
21	Tetrachloroethene	(ppb) <0.7	(ppb) <0.7	0.7	5
					5
22.	Toluene	1.9	<0.5	0.5	5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25	The second bear	06	40.5	0.5	5
	Trichloroethene	96	<0.5	-	=
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27	Vinyl chloride	13.3	<0.7	0.7	10
	Xylenes	<0.6	<0.6	0.6	5
40.	VÀTCHES	~0.0	~0.0	0.0	J

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leel E. Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

148980

Report Date: 9/18/96 Sample Received: 9/16/96

Dames & Moore One Court Towers/1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project No.: 30413-002

Project Name: CP Clare/Chicago Sample Description: Soil, E020

Sample No.: 63328

		Concentration		Method Detection	Quantitation
	Compound	Found In		Limit (MDL)	Limit
		Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	<0.5	<0.5	0.5	5
3	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0	4.0	5 5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
7	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
					Ē
	Chloroform	<0.5	<0.5	0.5	5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	, 5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
12	1,2-Dichloroethene (total)	49.5	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
14.	i, 2-Diciliolopiopane	70.5	10.5	4.0	
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
		40. 6	<0.6	0.6	5
	Ethylbenzene	<0.6			5
18.	Methylene Chloride	<0.8	<0.8	0.8	J
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Led & Zele

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

148980

Dames & Moore

One Court Towers/1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project No.: 30413-002

Project Name: CP Clare/Chicago Sample Description: Soil, E020

Sample No.: 63328

ethod Detection Quantitation
Limit (MDL) Limit

Report Date: 9/18/96

Sample Received: 9/16/96

	Compound	Concentration Found In		Method Detection Limit (MDL)	Quantitation Limit
	<u>Purgeables</u>	Sample (ppb)	Blank (ppb)	ug/kg (ppb)	ug/kg (ppb)
	Tetrachloroethene	<0.7	<0.7	0.7	5
22.	Toluene	<0.5	<0.5	0.5	5
	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	624	<0.5	0.5	5
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27.	Vinyl chloride	<0.7	<0.7	0.7	10
28.	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Lest E. Zehre

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

148979

Report Date: 9/18/96 Sample Received: 9/16/96

Dames & Moore

One Court Towers/1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project No.: 30413-002

Project Name: CP Clare/Chicago Sample Description: Soil, E021

Sample No.: 63329

	ition
Compound Found In Limit (MDL) Limit	
Purgeables Sample Blank ug/kg (ppb) ug/kg	(ppb)
(ppb) (ppb)	
1. Acetone <10.0 <10.0 10.0 10.0)
2. Benzene 1.1 <0.5 0.5	5
3. Bromodichloromethane <0.6 <0.6 0.6	5
4. Bromoform <4.0 <4.0 4.0	
4. BIOMOIOI m	•
5. Carbon disulfide <0.5 <0.5 0.5	5
6. Carbon tetrachloride <0.6 <0.6 0.6	5
7. Chlorobenzene <0.6 <0.6 0.6	5
8. Chlorodibromomethane <1.8 <1.8 1.8	
6. Chilorodioromome charles 110	
9. Chloroform <0.5 <0.5 0.5 10 1 1-Dichloroethane <0.5 <0.5 0.5	5
10. 1,1-Dichloroethane <0.5 <0.5 0.5	;
11. 1,2-Dichloroethane <1.6 <1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	5
12. 1,1-Dichloroethene <0.5 <0.5 0.5	5
, , , , , , , , , , , , , , , , , , ,	
	5
14. 1,2-Dichloropropane <0.5 <0.5 0.5	5
	5
16. trans-1,3-Dichloropropene <0.9 <0.9 0.9	5
	_
17. Ethylbenzene <0.6 <0.6 0.6	5
18. Methylene Chloride <0.8 <0.8 0.8	5
19. Styrene <10.0 <10.0 10.0 10.0)
	5

Leel E Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149066

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/18/96 Sample Received: As Listed

Sample Description: Soil Grab

Sampled	Sample No.:	Location	Chromium Method 6010A(6)	Lead Method 6010A(6)	Mercury Method 7471A(6)
9/16	63327	E019	16.7	10.4	<0.0300
9/16	63328	E020	18.6	11.3	<0.0300
9/16	63329	E021	15.9	10.8	<0.0300

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety.

I ADOD ATODY DIDECTOR

All results expressed as ppm unless otherwise indicated.

⁽⁶⁾ Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149122

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL Sample Description: Soil, E022

Sample No.: 63440

Report Date: 9/19/96 Sample Received: 9/17/96

Concentration Method Detection Ouantitation Limit (MDL) Limit Compound Found In Purgeables ug/kg (ppb) ug/kg (ppb) Sample Blank (ppb) (ppb) 10.0 100 1. Acetone <10.0 <10.0 5 2. Benzene 4.5 < 0.5 0.5 0.6 5 3. Bromodichloromethane <0.6 < 0.6 5 4. Bromoform 4.0 <4.0 <4.0 5. Carbon disulfide < 0.5 < 0.5 0.5 5 5 6. Carbon tetrachloride <0.6 < 0.6 0.6 5 7. Chlorobenzene < 0.6 < 0.6 0.6 5 8. Chlorodibromomethane <1.8 <1.8 1.8 9. Chloroform < 0.5 < 0.5 0.5 5 5 < 0.5 0.5 10. 1,1-Dichloroethane < 0.5 5 11. 1,2-Dichloroethane <1.6 <1.6 1.6 12. 1,1-Dichloroethene < 0.5 < 0.5 0.5 5 5 13. 1,2-Dichloroethene (total)194 0.5 < 0.5 5 0.5 14. 1,2-Dichloropropane < 0.5 < 0.5 15. cis-1,3-Dichloropropene < 0.5 < 0.5 0.5 5 5 16. trans-1,3-Dichloropropene < 0.9 < 0.9 0.9 0.6 5 17. Ethylbenzene < 0.6 < 0.6 5 18. Methylene Chloride < 0.8 < 0.8 0.8 <10.0 <10.0 10.0 100 19. Styrene 20. 1,1,2,2-Tetrachloroethane <3.9 < 3.9 3.9

Lech E. Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149122

or compression of the compressio

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL

Sample Description: Soil, E022

Sample No.: 63440

Report Date: 9/19/96 Sample Received: 9/17/96

Compound	Concent: Found		Method Detection Limit (MDL)	Quantitation Limit
<u>Purgeables</u>	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
21. Tetrachloroethene	(ppb) 1.2	(ppb) <0.7	0.7	5
22. Toluene	<0.5	<0.5	0.5	5
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Trichloroethene	250	<0.5	0.5	5
26. Vinyl acetate	<10.0	<10.0	10.0	100
27. Vinyl chloride	<0.7	<0.7	0.7	10
28. Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Lest & Zelew

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149181

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/20/96 Sample Received: 09/17/96

Sample Description: Soil Grab - E022

Sample No.: 63440

Analyte	Result	Date Analyzed	Ву	Method
Chromium	19.7	09/18/96	GF	6010A(6)
Lead	7.57	09/18/96	GF	6010A(6)
Mercury	<0.0300	09/18/96	ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Day W. Wy

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149120

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL Sample Description: Soil, E023

Sample No.: 63507

Report Date: 9/19/96 Sample Received: 9/18/96

Compound	Concentr Found		Method Detection Limit (MDL)	Quantitation Limit
Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
Pul geautes	(ppb)	(ppb)		100
1. Acetone	<10.0	<10.0	10.0	100
2. Benzene	<0.5	<0.5	0.5	5
2. Benzene				.
3. Bromodichloromethane	<0.6	<0.6	0.6	5 5
4. Bromoform	<4.0	<4.0	4.0	3
4. DIGMOTOLM				5
5. Carbon disulfide	<0.5	<0.5	0.5	5 5
6. Carbon tetrachloride	<0.6	<0.6	0.6	5
6. Carbon tetrachioride				_
a all sechanana	<0.6	<0.6	0.6	5
7. Chlorobenzene	<1.8	<1.8	1.8	5
8. Chlorodibromomethane	1110			_
O dilamatan	<0.5	<0.5	0.5	5
9. Chloroform	<0.5	<0.5	0.5	5
10. 1,1-Dichloroethane				_
4 A Dishlaraathana	<1.6	<1.6	1.6	5 5
11. 1,2-Dichloroethane	<0.5	<0.5	0.5	5
12. 1,1-Dichloroethene	40.5	• • • • • • • • • • • • • • • • • • • •		
total	<0.5	<0.5	0.5	5 5
13. 1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
14. 1,2-Dichloropropane	40.5	.0.0		
	<0.5	<0.5	0.5	5 5
15. cis-1,3-Dichloropropene	<0.9	<0.9	0.9	5
16. trans-1,3-Dichloropropene	~0. 3	10.5		
	<0.6	<0.6	0.6	5
17. Ethylbenzene	<0.8	<0.8	0.8	5
18. Methylene Chloride	40.0	70.0		
	410 O	<10.0	10.0	100
19. Styrene	<10.0	<3.9	3.9	5
20. 1,1,2,2-Tetrachloroethane	<3.9	43.3	~ ~ ~	

Feel E. Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149120

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL

Sample Description: Soil, E023

Sample No.: 63507

Report Date: 9/19/96 Sample Received: 9/18/96

Compound Purgeables	Concentr Found Sample	l In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
21. Tetrachloroethene 22. Toluene	(ppb) <0.7 <0.5	(ppb) <0.7 <0.5	0.7 0.5	5 5
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Trichloroethene	<0.5	<0.5	0.5	5
26. Vinyl acetate	<10.0	<10.0	10.0	100
27. Vinyl chloride	<0.7	<0.7	0.7	10
28. Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

JEST E ZULLI LABORATORY DIRECTOR

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149179

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/20/96 Sample Received: 09/18/96

Sample Description: Soil Grab - E023

Sample No.: 63507

Date						
Analyte	Result	Analyzed	Ву	Method		
Chromium	13.3	09/19/96	MG	6010A(6)		
Lead	9.03	09/19/96	MG	6010A(6)		
Mercury	<0.0300	09/18/96	ML	7471A(6)		

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

I ABODATODY DIDECTOR

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149121

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL Sample Description: Soil, E024

Sample No.: 63508

Report Date: 9/19/96 Sample Received: 9/18/96

Compound	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
1. Acetone 2. Benzene	<10.0 5.9	<10.0 <0.5	10.0 0.5	100 5
3. Bromodichloromethane	<0.6 <4.0	<0.6 <4.0	0.6 4.0	5 5
 Bromoform Carbon disulfide 	<0.5	<0.5	0.5	5 5
6. Carbon tetrachloride	<0.6	<0.6	0.6	5
 Chlorobenzene Chlorodibromomethane 	<0.6 <1.8	<1.8	1.8	5
9. Chloroform 10. 1,1-Dichloroethane	<0.5 <0.5	<0.5 <0.5	0.5 0.5	5 5
11. 1,2-Dichloroethane 12. 1,1-Dichloroethene	<1.6 <0.5	<1.6 <0.5	1.6 0.5	5 5
13. 1,2-Dichloroethene (total) 14. 1,2-Dichloropropane	20.3 <0.5	<0.5 <0.5	0.5 0.5	5 5
15. cis-1,3-Dichloropropene 16. trans-1,3-Dichloropropene	<0.5 <0.9	<0.5 <0.9	0.5 0.9	5 5
17. Ethylbenzene	<0.6	<0.6 <0.8	0.6 0.8	5 5
18. Methylene Chloride19. Styrene	<0.8	<10.0	10.0	100
20. 1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Leel E. Zeles

A DAD ATADY DIDECTAD

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149121

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago, IL

Sample Description: Soil, E024

Sample No.: 63508

Report Date: 9/19/96 Sample Received: 9/18/96

	Compound Purgeables	Concentr Found Sample	In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
	Tetrachloroethene Toluene	(ppb) <0.7 <0.5	(ppb) <0.7 <0.5	0.7 0.5	5 5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
	Trichloroethene	<0.5	<0.5	0.5	5
	Vinyl acetate	<10.0	<10.0	10.0	100
	Vinyl chloride	5.5	<0.7	0.7	10
	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

I A DOD ATODY DIDECTOR

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149178

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/20/96 Sample Received: 09/18/96

Sample Description: Soil Grab - E024

Sample No.: 63508

		Date			
Analyte	Result	Analyzed	Ву	Method	
Chromium	14.4	09/19/96	MG	6010A(6)	
Lead	9.52	09/19/96	MG	6010A(6)	
Mercury	0.0334	09/18/96	ML	7471A(6)	

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

I A DOD ATODY DIDECTOD

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149193

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil, E027

Sample No.: 63558

Report Date: 9/20/96 Sample Received: 9/18/96

		Concent	ration	Method Detection	Quantitation
	Compound	Found	1 In	Limit (MDL)	Limit
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
	Pulgeautes	(ppb)	(ppb)		100
1	Acetone	<10.0	<10.0	10.0	100
	Benzene	<0.5	<0.5	0.5	5
۷.	Benzene				5
3	Bromodichloromethane	<0.6	<0.6	0.6	5 5
	Bromoform	<4.0	<4.0	4.0	J
	DI CANOL COLOR			0.5	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	J
			10. 6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	1.8	5
8.	Chlorodibromomethane	<1.8	<1.8	1.0	
	_	<0.5	<0.5	0.5	5
9.	Chloroform	<0.5	<0.5	0.5	5
10.	1,1-Dichloroethane	<0.3	70.5	• 1-	
	1 2 Dishlamoothane	<1.6	<1.6	1.6	5
11.	1,2-Dichloroethane	4.7	<0.5	0.5	5
12.	1,1-Dichloroethene	τ•/			_
1.2	1,2-Dichloroethene (total)774	<0.5	0.5	5
13.	1,2-Dichloropropane	<0.5	<0.5	0.5	5
14.	1,2-Dichiolopropane				5
15	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5 5
15.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	3
10.	Clumb 1,0 Bacine 1			2 (5
17	Ethylbenzene	<0.6	<0.6	0.6	5
18	Methylene Chloride	22.2	<0.8	0.8	J
10.				10.0	100
19	Styrene	<10.0	<10.0	10.0	5
20.	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	J
_0.	-,-, ,-·				

Feel & Zeles

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149193

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil, E027

Sample No.: 63558

Report Date: 9/20/96 Sample Received: 9/18/96

	Compound Purgeables	Concentr Found Sample	l In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
	Tetrachloroethene Toluene	(ppb) 1.1 <0.5	(ppb) <0.7 <0.5	0.7 0.5	5 5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
	Trichloroethene	408	<0.5	0.5	5
	Vinyl acetate	<10.0	<10.0	10.0	100
	Vinyl chloride	446	<0.7	0.7	10
	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Les & Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149184

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/20/96 Sample Received: 09/18/96

Sample Description: Soil Grab - E027

Sample No.: 63558

Analyte	Resu		d By	Method
Chromiun	15.	6 09/19/9	6 MG	6010A(6)
Lead	9.	94 09/19/9	6 MG	6010A(6)
Mercury	<0.	0300 09/19/9	6 ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Dang W. Way

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149349

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/20/96

Sample Description: Soil, EO27A

Sample No.: 63887

*******		Concentra		Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	<u>Purgeables</u>	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)	40.0	100
-	Acetone	<10.0	<10.0		100
2.	Benzene	<0.5	<0.5	0.5	5
3	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0	4.0	5
т•	Diomoroim				
5.	Carbon disulfide	<0.5	<0.5	0.5	5 5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
•					
7.	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
•					
9.	Chloroform	1.3	<0.5	0.5	5
	1,1-Dichloroethane	<0.5	<0.5	0.5	5
	-,-				
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	18	<0.5	0.5	5
	,				
13.	1,2-Dichloroethene (total)	3980	<0.5		5
14.	1,2-Dichloropropane	<0.5	<0.5	0.5	5
	,				
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5 5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
	,				
17.	Ethylbenzene	<0.6	<0.6	0.6	5 5
	Methylene Chloride	<0.8	<0.8	0.8	5
	-				
19.	Styrene	<10.0	<10.0		100
20.	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lest E. Zele

/ 4 DOD 4TODY DIDECTOR

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149349

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/20/96

Sample Description: Soil, E027A

Sample No.: 63887

3a	Compound Purgeables	Concentra Found <u>Sample</u>	In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
	. Tetrachloroethene	(ppb) 206 22.2	(ppb) <0.7 <0.5	0.7 0.5	5 5
23 24	3. 1,1,1-Trichloroethane 4. 1,1,2-Trichloroethane	<0.5 7.6	<0.5 <2.5		5 5
	5. Trichloroethene 5. Vinyl acetate	5960 <10.0	<0.5 <10.0		5 100
2° 28	7. Vinyl chloride 3. Xylenes	580 <0.6	<0.7 <0.6	~ ~	10 5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leel & Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149580

THE RESERVE THE PROPERTY OF THE PARTY OF THE

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/25/96 Sample Received: 09/20/96

Sample Description: Soil Grab - E027A

Sample No.: 63887

Analyte	Result	Date Completed	Ву	Method
Chromium	15.0	09/21/96	KS	6010A(6)
Lead	9.52	09/21/96	KS	6010A(6)
Mercury	<0.050	09/23/96	ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

A A DOD ATODY DIDECTOR

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149186-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E028

Sample No.: 63668

Report Date: 9/23/96 Sample Received: 9/19/96

	Compound	Concentra Found <u>Sample</u> (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
	Acetone	28	<10.0	10.0	100
	Benzene	2.7	<0.5	0.5	5
	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	5
	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
	Chloroform	<0.5	<0.5	0.5	5
	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
12.	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total) 1,2-Dichloropropane) 4.1	<0.5	0.5	5
14.		<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
	Ethylbenzene	6.5	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0		100
20.	1,1,2,2-Tetrachloroethane	<3.9	<3.9		5

Leel E. Zehre

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149186-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E028

Sample No.: 63668

Report Date: 9/23/96 Sample Received: 9/19/96

	Compound Purgeables	Concentr Found <u>Sample</u>	In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
		(ppb)	(ppb)	0.7	5
	Tetrachloroethene	7.5	<0.7		5
22.	Toluene	3.6	<0.5	0.5	J
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	<0.5	<0.5	0.5	5
	Vinyl acetate	<10.0	<10.0	10.0	100
27	Vinyl chloride	4.3	<0.7	0.7	10
	Xylenes	19	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leal E. Zelen

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149186

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

> Report Date: 09/20/96 Sample Received: 09/19/96

Sample Description: Soil Grab - E028

Sample No.: 63668

		Date		
Analyte	Result	Analyzed	Ву	Method
Chromium	14.9	09/19/96	MG	6010A(6)
Lead	8.26	09/19/96	MG	6010A(6)
Mercury	<0.0300	09/19/96	ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Bay W. Wash

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149243-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E029

Sample No.: 63742

Report Date: 9/23/96 Sample Received: 9/19/96

	Compound	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
1	Acetone	(pp0) <10.0	<10.0	10.0	100
	Benzene	2.7	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6	0.6	5 5
	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	0.6	5 5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
9.	Chloroform	<0.5	<0.5	0.5	5 5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5 5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total)	0.7	<0.5	0.5	5 5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5 5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lest E. Zeles

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149243-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E029

Sample No.: 63742

Report Date: 9/23/96 Sample Received: 9/19/96

Compound	Concentr Found		Method Detection Limit (MDL)	Quantitation Limit
<u>Purgeables</u>	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppb)
21. Tetrachloroethene	<0.7	<0.7	0.7	5
22. Toluene	0.6	<0.5	0.5	5
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Trichloroethene	<0.5	<0.5	0.5	5
26. Vinyl acetate	<10.0	<10.0	10.0	100
27. Vinyl chloride	<0.7	<0.7	0.7	10
28. Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Fresh E. Zehred

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149243

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/23/96 Sample Received: 9/19/96

Project Name: CP Clare / Chicago Sample Description: Soil Grab - E029

Sample No.: 63742

Analyte	Result	Date Completed By Method
Chromium	14.1	09/20/96 GF 6010A(6)
Lead	10.9	09/20/96 GF 6010A(6)
Mercury	<0.0300	09/20/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Day W. Way

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149244-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E030

Sample No.: 63743

Report Date: 9/23/96 Sample Received: 9/19/96

		Concentra	tion	Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	Purgeables	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
	1 41 4 4 4 4	(ppb)	(ppb)		
1	Acetone	<10.0	<10.0	10.0	100
	Benzene	<0.5	<0.5	0.5	5
	201120110				
3.	Bromodichloromethane	<0.6	<0.6	0.6	5 5
	Bromoform	<4.0	<4.0	4.0	5
	21 0 11 0 1 1 1 1				
5.	Carbon disulfide	<0.5	<0.5	0.5	5 5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
0.					
7.	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
٠.	Cirioi odioi ememe viisii				
g	Chloroform	<0.5	<0.5	0.5	5 5
-	1,1-Dichloroethane	<0.5	<0.5	0.5	5
10.	1,1 blomblootham				
11	1,2-Dichloroethane	<1.6	<1.6	1.6	5 5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
12.	i,i biomoroomono				
13	1,2-Dichloroethene (total)	8.3	< 0.5	0.5	5
14	1,2-Dichloropropane	<0.5	< 0.5	0.5	5
17.	1,2 Diemoiopiopane				
15	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
10.	trans-1,5 Dientoropropene		• • •		
17	Ethylbenzene	<0.6	< 0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5
10.	Methy rene chroride	.0.0			
10	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane		<3.9	3.9	5
20.	1,1,2,2-1et1aci11010ethalie	70.7	13.7	***	

vial E. Zelee

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149244-A

10

5

Report Date: 9/23/96 Sample Received: 9/19/96

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago

Sample Description: Soil Grab, E030

Sample No.: 63743

27. Vinyl chloride

28. Xylenes

	Compound	Concentr Found		Method Detection Limit (MDL)	Quantitation Limit
	<u>Purgeables</u>	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
21	Tetrachloroethene	(ppb) 0.6	(ppb) <0.7	0.7	5
	Toluene	0.6	<0.5	0.5	5
					_
	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	<0.5	<0.5	0.5	5
	Vinyl acetate	<10.0	<10.0	10.0	100

<0.7

< 0.6

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

11

< 0.6

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

P. D. E. Zelen)

0.7

0.6

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149245-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E031

Sample No.: 63744

Report Date: 9/23/96 Sample Received: 9/19/96

		Concentr		Method Detection	Quantitation
	Compound	Found	In	Limit (MDL)	Limit
	<u>Purgeables</u>	<u>Sample</u>	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	0.8	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	0.6	5 5
	Chlorodibromomethane	<1.8	<1.8	1.8	5
9.	Chloroform	<0.5	<0.5	0.5	5
	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total)	0.5	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane		<3.9	3.9	5

Feel E. Zelw

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149245-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E031

Sample No.: 63744

Report Date: 9/23/96 Sample Received: 9/19/96

Compound	Concent: Found		Method Detection Limit (MDL)	Quantitation Limit
<u>Purgeables</u>	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppb)
21. Tetrachloroethene	<0.7	<0.7	0.7	5
22. Toluene	<0.5	<0.5	0.5	5
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Trichloroethene	<0.5	<0.5	0.5	5
26. Vinyl acetate	<10.0	<10.0	10.0	100
27. Vinyl chloride	<0.7	<0.7	0.7	10
28. Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Les E. Zelw

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149245

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/23/96 Sample Received: 9/19/96

Project Name: CP Clare / Chicago Sample Description: Soil Grab - E031

Sample No.: 63744

Analyte	Result	Date Completed By Method
Chromium	15.2	09/20/96 GF 6010A(6)
Lead	8.16	09/20/96 GF 6010A(6)
Mercury	<0.0300	09/20/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Day W. Wash

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149246-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E032

Sample No.: 63745

Report Date: 9/23/96 Sample Received: 9/19/96

	Compound	Concentr		Method Detection Limit (MDL)	Quantitation Limit
		Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
	24104414	(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	0.8	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6	0.6	5
4.	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	0.6	5
8.	Chlorodibromomethane	<1.8	<1.8	1.8	5
9.	Chloroform	<0.5	<0.5	0.5	5 5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5 5
12.	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5 5
	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lest E. Zelne

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149246-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare/Chicago Sample Description: Soil Grab, E032

Sample No.: 63745

Report Date: 9/23/96 Sample Received: 9/19/96

Compound Purgeables	Concentr Found <u>Sample</u> (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
 Tetrachloroethene	0.7	<0.7	0.7	5
Toluene	0.6	<0.5	0.5	5
1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
 Trichloroethene	<0.5	<0.5	0.5	5
Vinyl acetate	<10.0	<10.0	10.0	100
Vinyl chloride	<0.7	<0.7	0.7	10
Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Pr & Zelie

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149246

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/23/96 Sample Received: 9/19/96

Project Name: CP Clare / Chicago Sample Description: Soil Grab - E032

Sample No.: 63745

Analyte	Result	Date Completed By Method
Chromium	14.0	09/20/96 GF 6010A(6)
Lead	9.28	09/20/96 GF 6010A(6)
Mercury	<0.0300	09/20/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Many W. Wash

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149350

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/20/96

Sample Description: Soil, E033

Sample No.: 63888

001250		Concentra		Method Detection	Quantitation
	Compound	Found		Limit (MDL) ug/kg (ppb)	Limit ug/kg (ppb)
	<u>Purgeables</u>	Sample (ppb)	<u>Blank</u> (ppb)	ug/kg (ppu)	ug/kg (ppo)
1	Acetone		<10.0	10.0	100
_	Benzene	<0.5	<0.5		5
3	Bromodichloromethane	<0.6	<0.6	0.6	5
	Bromoform	<4.0	<4.0		5
5	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6		5
7	Chlorobenzene	<0.6	<0.6	0.6	5
	Chlorodibromomethane	<1.8	<1.8		5
0	Chloroform	<0.5	<0.5	0.5	5
	1,1-Dichloroethane	<0.5	<0.5		5
1 1	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	4.2	<0.5		5
13	1,2-Dichloroethene (total)	343	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8		5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Tel & Zul

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149350

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/20/96

Sample Description: Soil, E033

Sample No.: 63888

	Compound Purgeables	Concentra Found Sample		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
	ruigeautes	(ppb)	(ppb)		_
21	Tetrachloroethene	<0.7	<0.7		5 5
	Toluene	<0.5	<0.5	0.5	5
22	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25	Trichloroethene	7560	<0.5	0.5	5
	Vinyl acetate	<10.0	<10.0	10.0	100
27	Vinyl chloride	<0.7	<0.7	0.7	10
	Xylenes	2.9	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Feel & John

A DAD ATADY DIDECTAD

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

149581

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 09/25/96 Sample Received: 09/20/96

Sample Description: Soil Grab - E033A

Sample No.: 63888

Analyte	Result	Date Completed	Ву	Method
Chromium	17.6	09/21/96	KS	6010A(6)
Lead	5.98	09/21/96	KS	6010A(6)
Mercury	<0.050	09/23/96	ML	7471A(6)

All results expressed as ppm unless otherwise indicated

(6) Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

I A BOD ATODY DIDECTOR

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

147183

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 034

Sample No.: 64081

		Concentra	ation	Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0		100
	Benzene	<0.5	<0.5	0.5	5
			_		5
3.	Bromodichloromethane	<0.6			5 5
4.	Bromoform	<4.0	<4.0	4.0	5
				0.5	5
	Carbon disulfide	<0.5	<0.5		5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	3
		10 6	<0.6	0.6	5
	Chlorobenzene	<0.6	<1.8		5
8.	Chlorodibromomethane	<1.8	\1.0	1.0	•
•	Chlore form	<0.5	<0.5	0.5	5
	-Chloroform	<0.5	<0.5		5 5
10.	1,1-Dichloroethane	40.5	1010		
11	1,2-Dichloroethane	<1.6	<1.6	1.6	5
12	1,1-Dichloroethene	<0.5	<0.5		5
12.	1,1 Dichiologuano				
13	1,2-Dichloroethene (total)	46.2	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
	1,2 22000001111				_
15.	cis-1,3-Dichloropropene	<0.5	<0.5		5_
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
					~
17.	Ethylbenzene	<0.6			5
	Methylene Chloride	<0.8	<0.8	0.8	5
				40.0	100
19.	Styrene	<10.0			100
20.	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lace E. Zeles

8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

LABORATORY REPORT

147183

Dames & Moore
One Court Towers
1701 Golf Road, Suite 1000
Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 034

Sample No.: 64081

~~~~~~~	Compound	Concentra Found		Method Detection Limit (MDL)	Quantitation Limit
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
21.	Tetrachloroethene	<0.7	<0.7	0.7	5
22.	Toluene	<0.5	<0.5	0.5	5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	<0.5	<0.5	0.5	5
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27.	Vinyl chloride	16.3	<0.7	0.7	10
	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Fred E. Zelen



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

# LABORATORY REPORT

149499

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E034

Sample No.: 64081

Report Date: 9/26/96 Sample Received: 9/23/96

Analyte	Result	Date Completed	Ву	Method
Chromium	17.1	09/24/96	GF	6010A(6)
Lead	8.40	09/24/96	GF	6010A(6)
Mercury	<0.0300	09/24/96	ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Man W. Wash

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

147184

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 037

Sample No.: 64082

		Concentra	etion	Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	Purgeables	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	<0.5	<0.5	0.5	5
				2.6	F
	Bromodichloromethane	<0.6	<0.6	0.6	5
4.	Bromoform	<4.0	<4.0	4.0	5
5	Carbon disulfide	<0.5	<0.5	0.5	5
	Carbon tetrachloride	<0.6	<0.6	0.6	5 5
٠.					
7.	Chlorobenzene	<0.6	<0.6	0.6	5
8.	Chlorodibromomethane	<1.8	<1.8	1.8	5
					_
	Chloroform	<0.5	<0.5	0.5	5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	,	<0.5	<0.5	0.5	5
12.	1,1-Dichloroethene	~0.3	70.5	<b>0.</b> 5	3
13.	1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
					_
	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
	<del>-</del>	<0.8	<0.8	0.8	5
10.	Methylene Chloride	<b>~0.0</b>	<b>~</b> 0.0	0.0	<b>.</b>
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Les E. Zelw



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

# LABORATORY REPORT

147184

Dames & Moore
One Court Towers
1701 Golf Road, Suite 1000
Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 037

Sample No.: 64082

		Concentra	ition	Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		_
21.	Tetrachloroethene	<0.7	<0.7	0.7	5
22.	Toluene	<0.5	<0.5	0.5	5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	<0.5	<0.5	0.5	5
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27.	Vinyl chloride	<0.7	<0.7	0.7	10
28.	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leef E. Jehr



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

# LABORATORY REPORT

149800

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E037

Sample No.: 64082

Report Date: 9/26/96 Sample Received: 9/23/96

Analyte	Result	Date Completed By Method
Chromium	16.5	09/24/96 GF 6010A(6)
Lead	7.05	09/24/96 GF 6010A(6)
Mercury	<0.0300	09/24/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Man W. Wash

I A DOD ATODY DIDECTOD

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149542

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/25/96 Sample Received: 9/23/96

Sample Description: Soil, E038

Sample No.: 64083

5.5 25.5 LEV	Concentration Method Detection Quantitation						
	Compound	Found		Limit (MDL)	Limit		
	Purgeables	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)		
		(ppb)	(ppb)		100		
1.	Acetone	<10.0	<10.0		5		
	Benzene	<0.5	<0.5	0.5	J		
2	Bromodichloromethane	<0.6	<0.6	0.6	5		
	Bromoform	<4.0	<4.0		5		
_	- 1 11 .1613.	<0.5	<0.5	0.5	5		
5. 6.	Carbon disulfide Carbon tetrachloride	<0.6	<0.6		5		
			-0 (	0.6	5		
7.	Chlorobenzene	<0.6	<0.6		5		
8.	Chlorodibromomethane	<1.8	<1.8	1.0	•		
_	Ch. Laura Farma	<0.5	<0.5	0.5	5		
	Chloroform	<0.5	<0.5		5		
10.	1,1-Dichloroethane	40.5					
11	1,2-Dichloroethane	<1.6	<1.6	1.6	5		
11.	1,1-Dichloroethene	<0.5	<0.5	0.5	5		
12.	1,1-pichiorocthene				_		
13	1,2-Dichloroethene (total	) < 0.5	<0.5		5		
14	1,2-Dichloropropane	<0.5	<0.5	0.5	5		
	2,2 22 22 22 2			0.5	5		
15.	cis-1,3-Dichloropropene	<0.5	<0.5		5 5		
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	J		
	·			. 0.6	5		
17.	Ethylbenzene	<0.6			5		
18.	Methylene Chloride	<0.8	<0.8	0.8	•		
10	Sturopo	<10.0	<10.0	10.0	100		
19.	Styrene 1,1,2,2-Tetrachloroethane		<3.9		5		
۷0.	1,1,2,2-16t1delifo10ctilane						

Lest & Zelen



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149542

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/25/96 Sample Received: 9/23/96

Sample Description: Soil, E038

Sample No.: 64083

Compound	Concentra	In	Method Detection Limit (MDL)	Quantitation Limit ug/kg (ppb)	
<u>Purgeables</u>	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppo)	
21. Tetrachloroethene	<0.7	`` <b>&lt;</b> 0.7	0.7	5	
22. Toluene	<0.5	<0.5	0.5	5	
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5	
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5	
25. Trichloroethene	<0.5	<0.5	0.5	5	
26. Vinyl acetate	<10.0	<10.0	10.0	100	
27. Vinyl chloride	<0.7	<0.7	0.7	10	
28. Xylenes	<0.6	<0.6	0.6	5	

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Lest & Zelan



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149801

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E038

Sample No.: 64083

Report Date: 9/26/96 Sample Received: 9/23/96

		Date
Analyte	Result	Completed By Method
Chromium	10.9	09/24/96 GF 6010A(6)
Lead	7.49	09/24/96 GF 6010A(6)
Mercury	<0.0300	09/24/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Day W. War

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

147185

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 039

Sample No.: 64084

		Concentra	ation	Method Detection	Quantitation
	Compound	Found	In	Limit (MDL)	Limit
	Purgeables	Sample	<b>Blank</b>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	<0.5	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6		5
4.	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5 5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	0.6	5
8.	Chlorodibromomethane	<1.8	<1.8	1.8	5
9.	Chloroform	2.8	<0.5	0.5	5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Fred E. Zelw



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

147185

Dames & Moore
One Court Towers
1701 Golf Road, Suite 1000
Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 039

Sample No.: 64084

		Concentra	Method Detection	Quantitation	
	Compound	Found	In	Limit (MDL)	Limit
	<u>Purgeables</u>	<u>Sample</u>	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
21.	Tetrachloroethene	<0.7	<0.7	0.7	5
22.	Toluene	<0.5	<0.5	0.5	5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24.	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	<0.5	<0.5	0.5	5
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27.	Vinyl chloride	<0.7	<0.7	0.7	10
	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Les E. Zeles



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149802

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E039

Sample No.: 64084

Report Date: 9/26/96 Sample Received: 9/23/96

Analasta	Result	Date Completed By Method
Analyte	Resurt	
Chromium	13.0	09/24/96 GF 6010A(6)
Lead	10.6	09/24/96 GF 6010A(6)
Mercury	<0.0300	09/24/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

A BORATORY HIDECTOR

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

147186

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 040

Sample No.: 64085

		Concentra	ation	Method Detection	Quantitation
	Compound	Found		Limit (MDL)	Limit
	<u>Purgeables</u>	Sample	Blank	ug/kg (ppb)	ug/kg (ppb)
		(ppb)	(ppb)		
1.	Acetone	<10.0	<10.0	10.0	100
2.	Benzene	<0.5	<0.5	0.5	5
3.	Bromodichloromethane	<0.6	<0.6	0.6	5
4.	Bromoform	<4.0	<4.0	4.0	5
5.	Carbon disulfide	<0.5	<0.5	0.5	5
6.	Carbon tetrachloride	<0.6	<0.6	0.6	5
7.	Chlorobenzene	<0.6	<0.6	0.6	5
8.	Chlorodibromomethane	<1.8	<1.8	1.8	5 5
9.	Chloroform	<0.5	<0.5	0.5	5
10.	1,1-Dichloroethane	<0.5	<0.5	0.5	5
11.	1,2-Dichloroethane	<1.6	<1.6	1.6	5
12.	1,1-Dichloroethene	<0.5	<0.5	0.5	5
13.	1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
14.	1,2-Dichloropropane	<0.5	<0.5	0.5	5
15.	cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
16.	trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
17.	Ethylbenzene	<0.6	<0.6	0.6	5
18.	Methylene Chloride	<0.8	<0.8	0.8	5
19.	Styrene	<10.0	<10.0	10.0	100
	1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Lest E. Zelw



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

147186

Dames & Moore
One Court Towers
1701 Golf Road, Suite 1000
Rolling Meadows, IL 60008

Report Date: 9/24/96 Sample Received: 9/23/96

Sample Description: Soil, E 040

Sample No.: 64085

		Concentra	ition	Method Detection Quantitation		
	Compound	Found In		Limit (MDL)	Limit	
	<u>Purgeables</u>	Sample	<u>Blank</u>	ug/kg (ppb)	ug/kg (ppb)	
		(ppb)	(ppb)		_	
21.	Tetrachloroethene	<0.7	<0.7	0.7	5	
22.	Toluene	<0.5	<0.5	0.5	5	
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5	
	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5	
25.	Trichloroethene	<0.5	<0.5	0.5	5	
26.	Vinyl acetate	<10.0	<10.0	10.0	100	
27.	Vinyl chloride	<0.7	<0.7	0.7	10	
	Xylenes	<0.6	<0.6	0.6	5	

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leel E. Zelw



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149803

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E040

Sample No.: 64085

Report Date: 9/26/96 Sample Received: 9/23/96

		<b>D</b> = 4 =
Analyte	Result	Date Completed By Method
Chromium	13.2	09/24/96 GF 6010A(6)
Lead	8.96	09/24/96 GF 6010A(6)
Mercury	<0.0300	09/24/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Man W. Vanh

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149489

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil, E041

Sample No.: 64249

Report Date: 9/25/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
Acetone Benzene	<10.0 <0.5	<10.0 <0.5	10.0 0.5	100 5
 Bromodichloromethane Bromoform	<0.6 <4.0	<0.6 <4.0	0.6 4.0	5 5
 Carbon disulfide Carbon tetrachloride	<0.5 <0.6	<0.5 <0.6		5 5
Chlorobenzene Chlorodibromomethane	<0.6 <1.8	<0.6 <1.8		5 5
 Chloroform 1,1-Dichloroethane	<0.5 <0.5	<0.5 <0.5		5 5
1,2-Dichloroethane 1,1-Dichloroethene	<1.6 <0.5	<1.6 <0.5		5 5
1,2-Dichloroethene (total 1,2-Dichloropropane	) 0.9 <0.5	<0.5 <0.5		5 5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<0.5 <0.9	<0.5 <0.9	0.5	5 5
Ethylbenzene Methylene Chloride	<0.6 46.	<0.6 <0.8	0.6 0.8	5 5
Styrene 1,1,2,2-Tetrachloroethane	<10.0 <3.9	<10.0 <3.9	10.0 3.9	100 5

Les E. Zeles



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149489

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil, E041

Sample No.: 64249

Report Date: 9/25/96 Sample Received: 9/24/96

	Compound	Concentration Method Detection Found In Limit (MDL)		Quantitation Limit	
	Purgeables	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppb)
21.	Tetrachloroethene	<0.7	<0.7	0.7	5
	Toluene	<0.5	<0.5	0.5	5
	1,1,1-Trichloroethane 1,1,2-Trichloroethane	0.5 <2.5	<0.5 <2.5		5 5
	Trichloroethene Vinyl acetate	<0.5 <10.0	<0.5 <10.0		5 100
	Vinyl chloride Xylenes	<0.7 <0.6	<0.7 <0.6	0.7 0.6	10 5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leal E. Zelve



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149814

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E041

Sample No.: 64249

Report Date: 9/26/96 Sample Received: 9/24/96

70	THE SECOND STATE CONTROL OF TH							
	Analyte	Result	Date Completed	Ву	Method			
	Chromium	16.2	09/25/96	GF	6010A(6)			
	Lead	11.1	09/25/96	GF	6010A(6)			
	Mercury	<0.0300	09/24/96	ML	7471A(6)			

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Jany W. Wayle

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149490

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil, E042

Sample No.: 64250

Report Date: 9/25/96 Sample Received: 9/24/96

Ouantitation Concentration Method Detection Limit (MDL) Limit Found In Compound ug/kg (ppb) ug/kg (ppb) Blank Sample Purgeables (ppb) (ppb) 100 10.0 <10.0 <10.0 1. Acetone 5 0.5 < 0.5 < 0.5 2. Benzene 0.6 5 < 0.6 < 0.6 3. Bromodichloromethane 5 <4.0 4.0 4. Bromoform <4.0 5 < 0.5 < 0.5 0.5 5. Carbon disulfide 5 0.6 < 0.6 < 0.6 6. Carbon tetrachloride 5 < 0.6 0.6 < 0.6 7. Chlorobenzene 5 1.8 8. Chlorodibromomethane <1.8 <1.8 5 < 0.5 0.5 < 0.5 9. Chloroform 5 0.5 < 0.5 < 0.5 10. 1,1-Dichloroethane 1.6 <1.6 <1.6 11. 1,2-Dichloroethane 5 7.6 < 0.5 0.5 12. 1,1-Dichloroethene 5 0.5 < 0.5 13. 1,2-Dichloroethene (total) < 0.5 5 0.5 < 0.5 < 0.5 14. 1,2-Dichloropropane 0.5 5 < 0.5 < 0.5 15. cis-1,3-Dichloropropene 5 0.9 < 0.9 < 0.9 16. trans-1,3-Dichloropropene 5 0.6 1.5 < 0.6 17. Ethylbenzene 5 <0.8 0.8 60. 18. Methylene Chloride 100 10.0 <10.0 19. Styrene <10.0 <3.9 3.9 20. 1,1,2,2-Tetrachloroethane <3.9

Tiel E. Zelee



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149490

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil, E042

Sample No.: 64250

Report Date: 9/25/96 Sample Received: 9/24/96

	mpound	Concentra Found	In	Method Detection Limit (MDL)	Quantitation Limit
<u>Pu</u>	<u>rgeables</u>	Sample (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppb)
21. Te	trachloroethene	<0.7	<0.7	0.7	5
22. To	luene	<0.5	<0.5	0.5	5
23. 1.	1,1-Trichloroethane	35.7	<0.5	0.5	5
	1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Tr	ichloroethene	<0.5	<0.5	0.5	5
26. Vi	nyl acetate	<10.0	<10.0	10.0	100
27. Vi	nyl chloride	<0.7	<0.7	0.7	10
28. Xy		5.5	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Leal E. Zelan



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149815

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E042

Sample No.: 64250

Report Date: 9/26/96 Sample Received: 9/24/96

は、					
Analyte	Result	Date Completed By Method			
Chromium	17.8	09/25/96 GF 6010A(6)			
Lead	12.1	09/25/96 GF 6010A(6)			
Mercury	<0.0300	09/24/96 ML 7471A(6)			

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Day W. Way

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149494

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO43

Sample No.: 64251

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)	In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
Acetone Benzene	<10.0 <0.5	<10.0	10.0 0.5	100 5
Bromodichloromethane Bromoform	<0.6 <4.0	<0.6 <4.0		5 5
Carbon disulfide	<0.5	<0.5	0.5	5
Carbon tetrachloride	<0.6	<0.6	0.6	5
Chlorobenzene	<0.6	<0.6	0.6	5
Chlorodibromomethane	<1.8	<1.8	1.8	5
 Chloroform	<0.5	<0.5	0.5	5
1,1-Dichloroethane	<0.5	<0.5	0.5	5
1,2-Dichloroethane	<1.6	<1.6	1.6	5
1,1-Dichloroethene	<0.5	<0.5	0.5	5
1,2-Dichloroethene (total)	<0.5	<0.5	0.5	5
1,2-Dichloropropane	<0.5	<0.5	0.5	5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<0.5 <0.9	<0.5 <0.9	0.5 0.9	5 5
Ethylbenzene	<0.6	<0.6	0.6	5
Methylene Chloride	<0.8	<0.8	0.8	5
Styrene	<10.0	<10.0	10.0	100
1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Feel E. Zehre



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149494

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab E043

Sample No.: 64251

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
 Tetrachloroethene	<0.7	<0.7	0.7	5
Toluene	<0.5	<0.5	0.5	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<0.5 <2.5	<0.5 <2.5	0.5	5 5
 Trichloroethene	<0.5	<0.5	0.5	5
Vinyl acetate	<10.0	<10.0	10.0	100
Vinyl chloride	<0.7	<0.7	0.7	10
Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Teal E. Zelen



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

Result

18.6

9.90

< 0.0300

149816

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E043

Sample No.: 64251

Analyte

Chromium

Lead

Mercury

Report Date: 9/26/96 Sample Received: 9/24/96

Date Completed	Ву	Method
09/25/96	GF	6010A(6)
09/25/96	GF	6010A(6)
09/24/96	ML	7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Jany W. Wayl

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149495

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO45

Sample No.: 64254

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
Acetone Benzene	<10.0 <0.5	<10.0 <0.5	10.0 0.5	100 5
Bromodichloromethane Bromoform	<0.6 <4.0	<0.6 <4.0	0.6 4.0	5 5
 Carbon disulfide Carbon tetrachloride	<0.5 <0.6	<0.5 <0.6	0.5 0.6	5 5
Chlorobenzene Chlorodibromomethane	<0.6 <1.8	<0.6 <1.8		5 5
Chloroform 1,1-Dichloroethane	<0.5 <0.5	<0.5 <0.5		5 5
1,2-Dichloroethane 1,1-Dichloroethene	<1.6 <0.5	<1.6 <0.5		5 5
1,2-Dichloroethene (total) 1,2-Dichloropropane	16.6 <0.5	<0.5 <0.5		5 5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<0.5 <0.9	<0.5 <0.9		5 5
Ethylbenzene Methylene Chloride	<0.6 <0.8	<0.6 <0.8		5 5
Styrene 1,1,2,2-Tetrachloroethane	<10.0 <3.9	<10.0 <3.9	10.0 3.9	100 5

Fred E. Zelew



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149495

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab E045

Sample No.: 64254

Report Date: 9/26/96 Sample Received: 9/24/96

	Compound	Concentra Found		Method Detection Limit (MDL)	Quantitation Limit
	Purgeables	Sample (ppb)	<u>Blank</u> (ppb)	ug/kg (ppb)	ug/kg (ppb)
21.	Tetrachloroethene	<0.7	<0.7	0.7	5
	Toluene	<0.5	<0.5	0.5	5
23.	1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
	1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25.	Trichloroethene	12.1	<0.5	0.5	5
26.	Vinyl acetate	<10.0	<10.0	10.0	100
27.	Vinyl chloride	20.1	<0.7	0.7	10
28.	Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

That E. Zelee



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

## LABORATORY REPORT

149818

CONTRACTOR OF THE PROPERTY OF

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E045

Sample No.: 64254

Report Date: 9/26/96 Sample Received: 9/24/96

Analyte	Result	Date Completed By Method
Chromium	16.9	09/25/96 GF 6010A(6)
Lead	10.8	09/25/96 GF 6010A(6)
Mercury	<0.0300	09/24/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

Jan W. Wayl-

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149492

CONTRACTOR OF THE PERSON OF TH

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO-46

Sample No.: 64299

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample	In <u>Blank</u>	Method Detection Limit (MDL)ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
Acetone Benzene	(ppb) <10.0 <0.5	(ppb) <10.0 <0.5	10.0 0.5	100 5
Bromodichloromethane	<0.6	<0.6	0.6	5
Bromoform	<4.0	<4.0	4.0	5
Carbon disulfide Carbon tetrachloride	<0.5 <0.6	<0.5 <0.6		5 5
Chlorobenzene	<0.6	<0.6	0.6	5
Chlorodibromomethane	<1.8	<1.8	1.8	5
 Chloroform	<0.5	<0.5	0.5	5
1,1-Dichloroethane	<0.5	<0.5	0.5	5
1,2-Dichloroethane	<1.6	<1.6	1.6	5
1,1-Dichloroethene	<0.5	<0.5	0.5	5
1,2-Dichloroethene (total) 1,2-Dichloropropane	<0.5 <0.5	<0.5 <0.5	0.5 0.5	5 5
cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
Ethylbenzene	<0.6	<0.6	0.6	5
Methylene Chloride	<0.8	<0.8	0.8	5
Styrene	<10.0	<10.0	10.0	100
1,1,2,2-Tetrachloroethane	<3.9	<3.9	3.9	5

Leal E. Zelre



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149492

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO-46

Sample No.: 64299

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)		Method Detection Limit (MDL)ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
 Tetrachloroethene Toluene	<0.7 <0.5	<0.7 <0.5	0.7 0.5	5 5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<0.5 <2.5	<0.5 <2.5		5 5
 Trichloroethene Vinyl acetate	<0.5 <10.0	<0.5 <10.0	0.5 10.0	5 100
Vinyl chloride Xylenes	<0.7 <0.6	<0.7 <0.6		10 5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Seal E. Zeles



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149492-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E046

Sample No.: 64299

Report Date: 9/27/96 Sample Received: 9/24/96

P) A		Date			
	Analyte	Result	Completed By	Method	
	Chromium	18.0	09/25/96 GF	6010A(6)	
	Lead	7.76	09/25/96 GF	6010A(6)	
	Mercury	<0.0300	09/25/96 ML	7471A(6)	

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

May W. Wayh

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149493

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO-47

Sample No.: 64300

Report Date: 9/26/96 Sample Received: 9/24/96

Compound Purgeables	Concentra Found Sample (ppb)		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
Acetone Benzene	<10.0 <0.5	<10.0 <0.5		100 5
Bromodichloromethane	<0.6	<0.6	0.6	5
Bromoform	<4.0	<4.0	4.0	5
Carbon disulfide	<0.5	<0.5	0.5	5
Carbon tetrachloride	<0.6	<0.6	0.6	5
Chlorobenzene	<0.6	<0.6	0.6	5
Chlorodibromomethane	<1.8	<1.8	1.8	5
Chloroform	<0.5	<0.5	0.5	5
1,1-Dichloroethane	<0.5	<0.5	0.5	5
1,2-Dichloroethane	<1.6	<1.6	1.6	5
1,1-Dichloroethene	<0.5	<0.5	0.5	5
1,2-Dichloroethene (total) 1,2-Dichloropropane	2.7 <0.5	<0.5 <0.5	0.5 0.5	5 5
cis-1,3-Dichloropropene	<0.5	<0.5	0.5	5
trans-1,3-Dichloropropene	<0.9	<0.9	0.9	5
Ethylbenzene	<0.6	<0.6	0.6	5
Methylene Chloride	<0.8	<0.8	0.8	5
Styrene 1,1,2,2-Tetrachloroethane	<10.0 <3.9	<10.0 <3.9	10.0 3.9	

Fiel E. Zeles



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149493

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab EO-47

Sample No.: 64300

Report Date: 9/26/96 Sample Received: 9/24/96

Compound <u>Purgeables</u>	Concentr Found Sample	In <u>Blank</u>	Method Detection Limit (MDL)ug/kg (ppb)	Quantitation Limit ug/kg (ppb)
04	(ppb)	(ppb)	0.7	E
21. Tetrachloroethene	<0.7	<0.7	0.7	5
22. Toluene	<0.5	<0.5	0.5	5
23. 1,1,1-Trichloroethane	<0.5	<0.5	0.5	5
24. 1,1,2-Trichloroethane	<2.5	<2.5	2.5	5
25. Trichloroethene	<0.5	<0.5	0.5	5
26. Vinyl acetate	<10.0	<10.0	10.0	100
27. Vinyl chloride	4.5	<0.7	0.7	10
28. Xylenes	<0.6	<0.6	0.6	5

All results expressed as ppb unless otherwise indicated.

Methods performed according to SW-846, "Test Methods for Evaluating Solid Waste".

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except its entirety.

Le E. Zelw

. A DOD 4TODY DIDECTO



8100 North Austin Avenue Morton Grove, Illinois 60053-3203 847-967-6666 FAX: 847-967-6735

### LABORATORY REPORT

149493-A

Dames & Moore One Court Towers 1701 Golf Road, Suite 1000 Rolling Meadows, IL 60008

Project Name: CP Clare

Sample Description: Soil Grab - E047

Sample No.: 64300

Report Date: 9/27/96 Sample Received: 9/24/96

Analyte	Result	Date Completed By Method
Chromium	16.2	09/25/96 GF 6010A(6)
Lead	5.49	09/25/96 GF 6010A(6)
Mercury	<0.0300	09/25/96 ML 7471A(6)

The contents of this report apply to the sample analyzed. No duplication of this report is allowed except in its entirety

May W. Wash

All results expressed as ppm unless otherwise indicated

⁽⁶⁾ Methods performed according to SW-846 "Test Methods for Evaluating Solid Waste"

# Appendix G Groundwater Modelling



### GROUNDWATER MODELLING R-14 AND R-26 EQUATIONS

URS has assessed the potential for residual soil volatile organic compound (VOC) impacts to migrate via leaching and groundwater transport beyond the focused area of investigation boundaries. The focused investigation area boundaries represent the aerial limits for which a No Further Remediation letter is being sought. This potential for contaminant migration has been calculated using worst case concentrations and applying the Tiered Approach to Corrective Action Objectives (TACO) Equations for leaching factor (R-14) and downgradient receptor concentrations (R-26).

Contaminant migration estimates have been recalculated for trichloroethene (TCE), tetrachloroethene (PCE), vinyl chloride, and cis 1, 2-DCE. These constituents represent the only VOCs for which residual soil concentrations exceed the Tier 2 soil component of groundwater ingestion remediation objectives. Copies of URS's Tier 2 calculations for this exposure pathway are included later in this appendix. A summary of sample locations where the detected chemical of concern (COC) concentrations were found to exceed the corresponding Tier 2 remediation objective is provided in Table A and on Figures 1 and 3 through 6 of this appendix. The highest measured concentration of each COC is presented below.

#### **Highest Soil Concentration of COC**

Parameter	Tier 2 Soil Component of Class II	Highest	Sample Location	
	<b>Groundwater Ingestion</b>	Concentration	and Depth (ft)	
	Remediation Objective (mg/kg)	(mg/kg)		
TCE	1.32	55.4	PG 3 (10-12)	
PCE	1.25	41.4	PG 13 (9-11)	
Vinyl chloride	0.105	0.713	PG 16 (3-5)	
cis 1,2-DCE	2.96	22.6	PG 16 (3-5)	

The R-14 calculations are intended to simulate the vertical downward migration of dissolved chemical constituents through soil with a one-dimensional leaching equation. Horizontal migration of dissolved chemical constituents through groundwater is then approximated using R-26 with a one-dimensional advective transport simulation including three-dimensional dispersion. The purpose of the calculations in this instance is to predict potential groundwater contaminant concentrations at the boundaries of the focused area of investigation from the source area within the study area. The assumed source area varies for each of the four COCs evaluated as a function of the lateral dimensions where measured soil contaminant concentrations were found to exceed the Tier 2 soil component of (Class II) groundwater ingestion remediation objective. Figures 3 through 6 of this appendix depict the assumed source area for each of the COCs.

In calculating the equations R-14 and R-26, specific input parameters were selected, including:

- Hydraulic conductivity (K) = 1.79 x 10⁻⁸ cm/sec obtained via Flexible Wall Permeater testing (ASTM-D 5084-90, TACO Appendix C, Table F) of Shelby tube soil samples obtained on the adjacent CP Clare site. The geotechnical data are provided in Table B.
- Hydraulic gradient (I) = 0.074 cm/cm (ft/ft). This value is estimated based on groundwater

- elevations measured on March 31, 1995 for the adjacent CP Clare site. The groundwater elevations and contour interval are provided in Figure 2 of this appendix. Direction of groundwater flow is toward the west.
- Source width perpendicular to groundwater flow direction in horizontal plane  $(S_w) = 28$  feet. The total width of the focused area of investigation in the N-S direction measures 30 feet. Soil samples were obtained at a distance of no less than one foot from the focused investigation area boundaries shown on Figure 1 of this appendix.
- Source width perpendicular to groundwater flow direction in vertical plane  $(S_d) = 200$  feet is the default value for the soil component of groundwater ingestion exposure route in TACO, Appendix C, Table D.
- Width of source area parallel to direction of groundwater flow (W) varies based on the particular contaminant of concern and measured concentrations (in the E-W direction) that exceed the corresponding Tier 2 soil component of groundwater ingestion remediation objective. The assumed values for each of the contaminants are presented in the tables in Appendix B. Groundwater flow direction is toward the west as shown on Figure 2 of this appendix.
- The highest measured concentration for each of the four COCs is presented in Table A. This "worst case" concentration was very conservatively assumed for the entire source area.

Input data for each COC are provided later in this appendix.

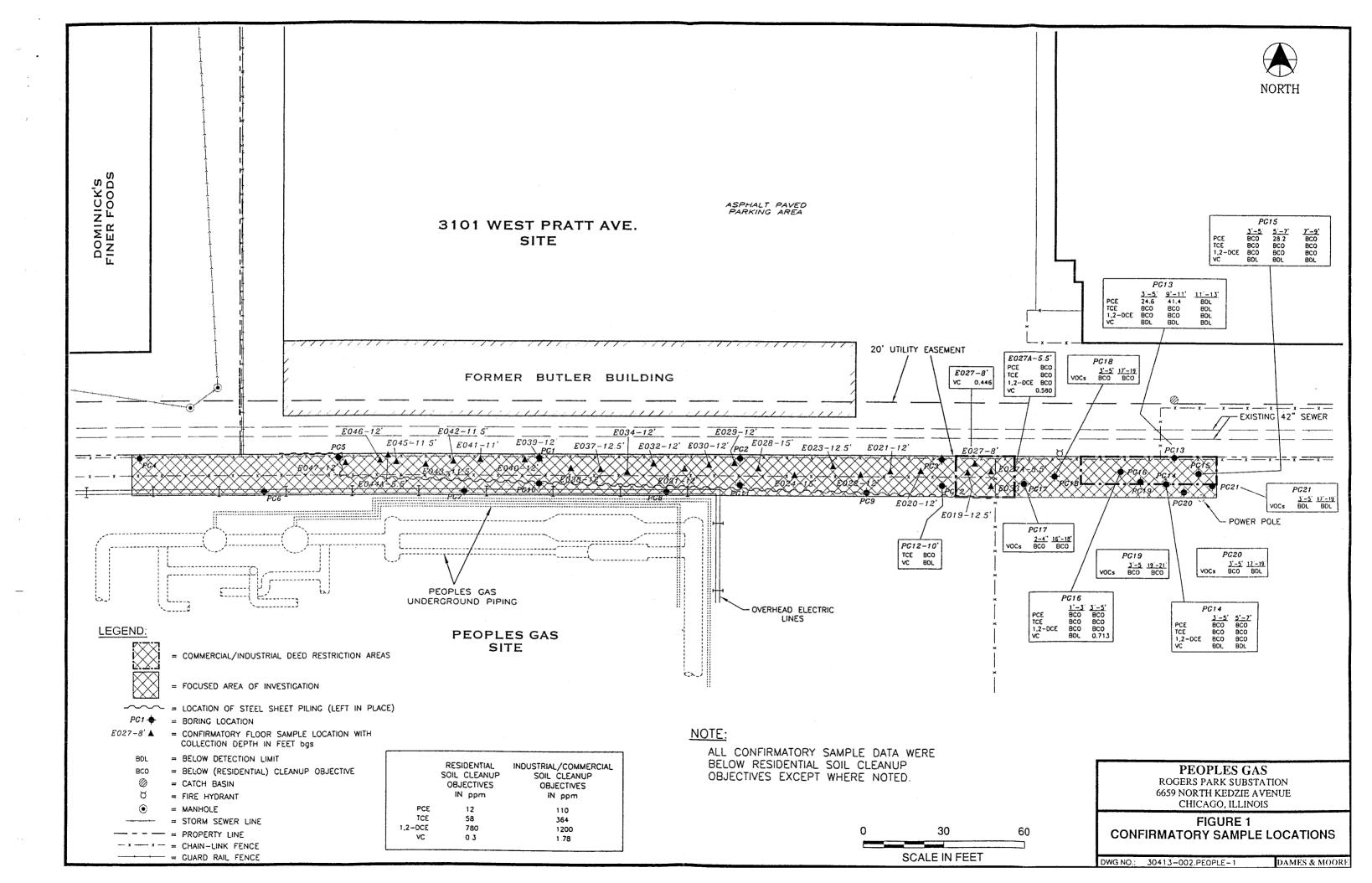
#### Results

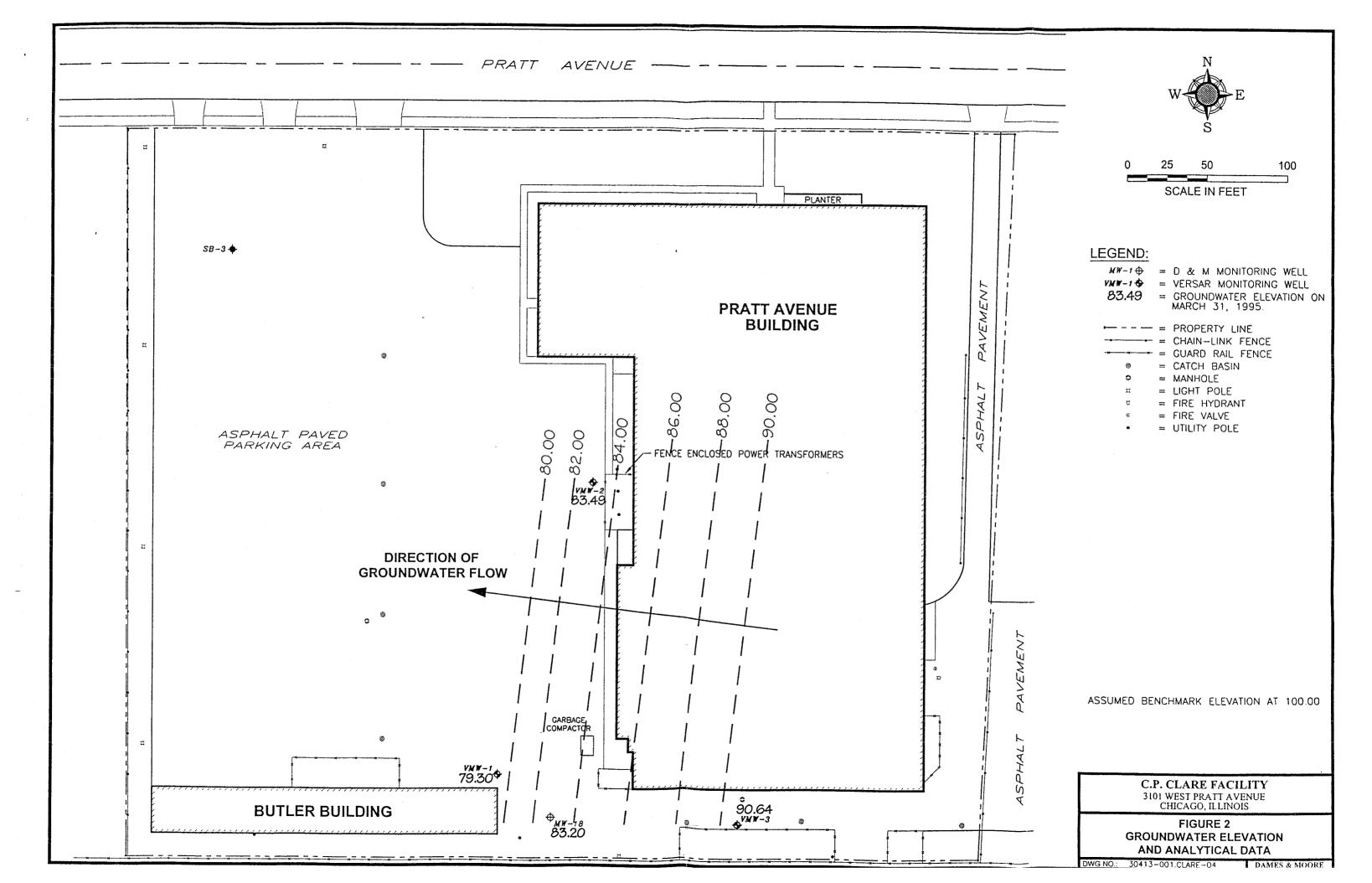
The TACO R-14 and R-26 Equations have been used to evaluate the potential for residual soil contamination to leach to groundwater, followed by lateral migration in groundwater to the boundaries of the focused area of investigation using worst case concentrations of each COC (TCE, PCE, vinyl chloride, and cis 1, 2 DCE). For purposes of the evaluation, potential groundwater concentrations were predicted at a distance one foot away from the source and, as mentioned, the maximum detected soil concentration was assumed to be present throughout the source area. The calculation was performed to ensure that potential migration to groundwater from soil will not result in an exceedence of the Class II groundwater standard at the focused area of investigation boundary. The results of the calculations are provided below.

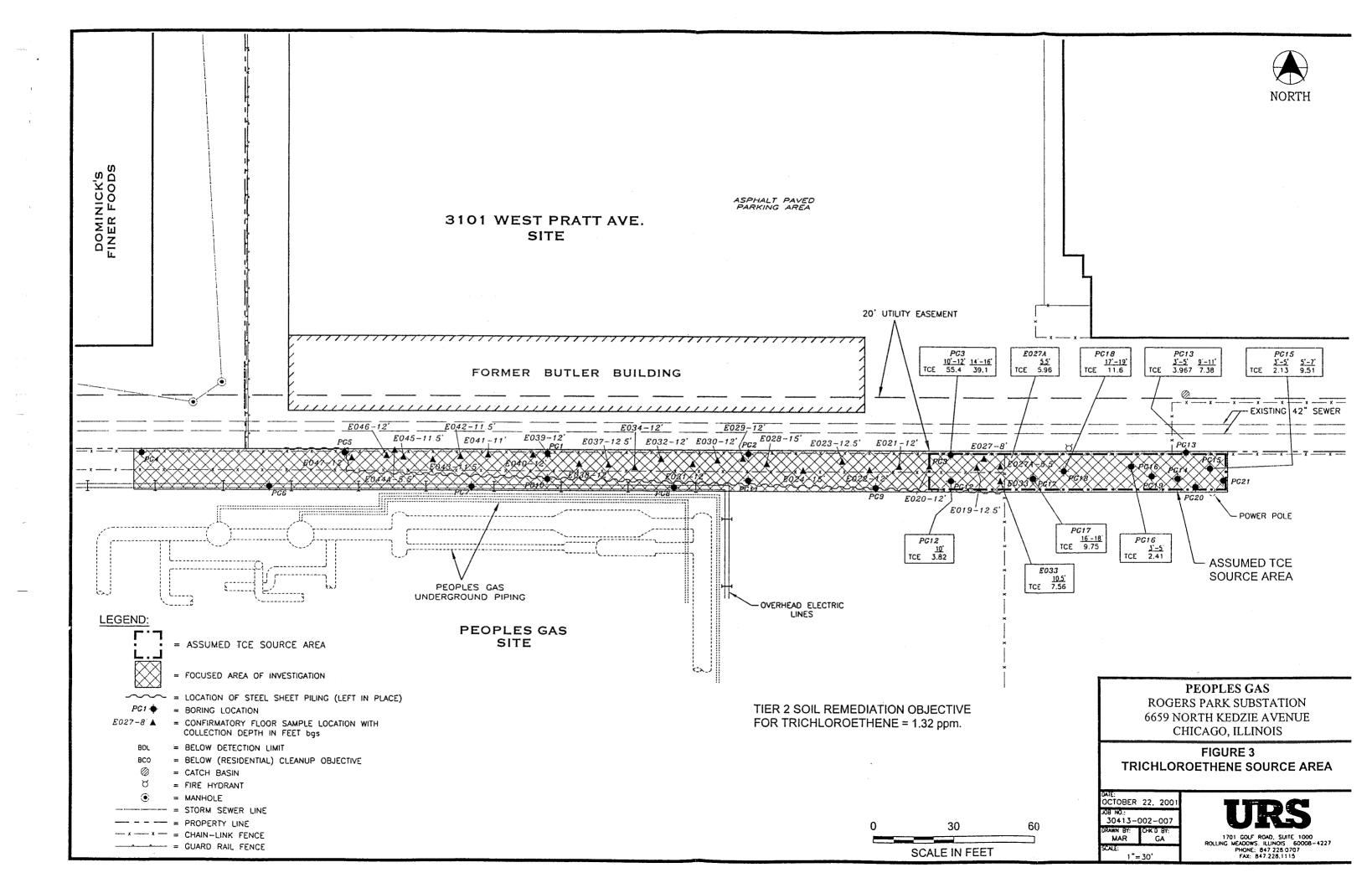
## Results of Calculations using Equations R-14 and R-26 Based on Maximum Potential Groundwater Concentrations

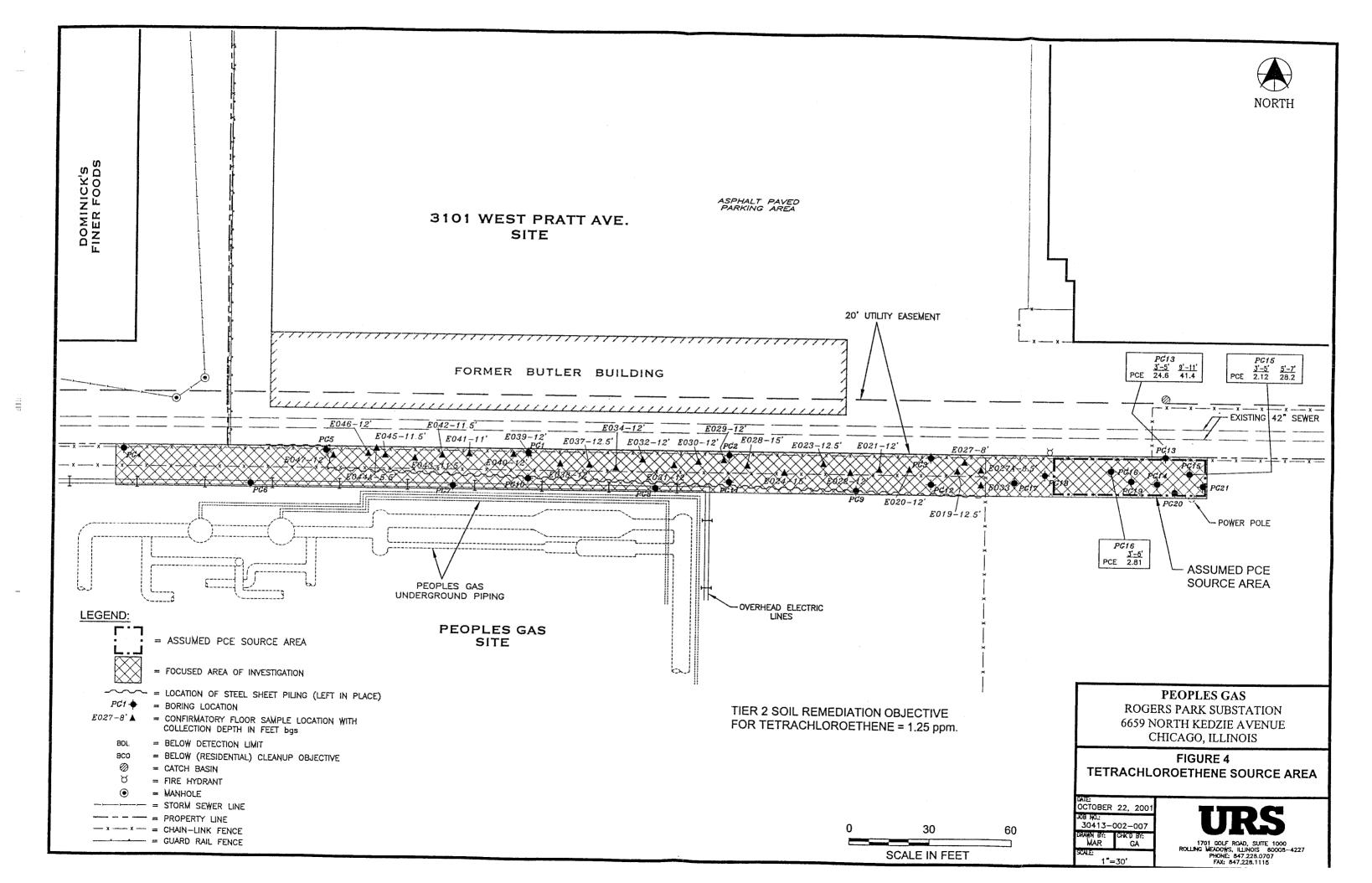
Constituent	Maximum Soil Concentration Detected on Site (mg/kg)	Leaching Factor (Equation R-14) (kg/L)	Maximum Calculated Groundwater Concentration (mg/L)	Groundwater Concentration 1 ft Away (Equation R-26) (mg/L)	Class II Groundwate r Standard (mg/L)	Solubility in Water (mg/L)
TCE	55.4	0.161	8.93	1.41 x 10 ⁻⁰⁶	0.025	1,100
PCE	41.4	0.171	7.09	4.82 x 10 ⁻¹¹	0.025	200
Vinyl Chloride	0.713	1.12	0.80	1.40 x 10 ⁻⁰⁵	0.01	2,760
Cis 1,2-DCE	22.6	0.707	15.98	2.79 x 10 ⁻⁴	0.2	3,500

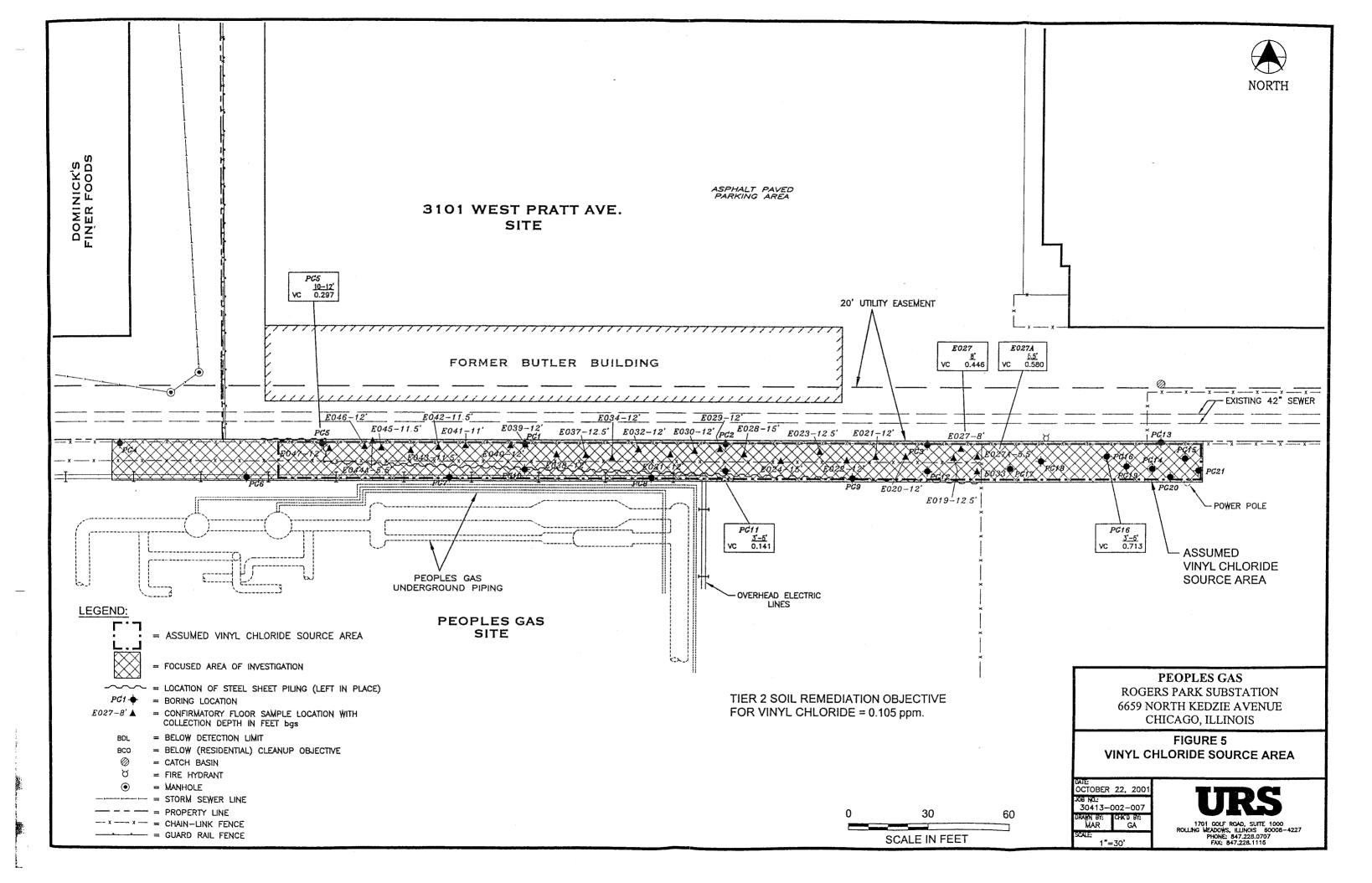
The following steps were taken to produce the above values:

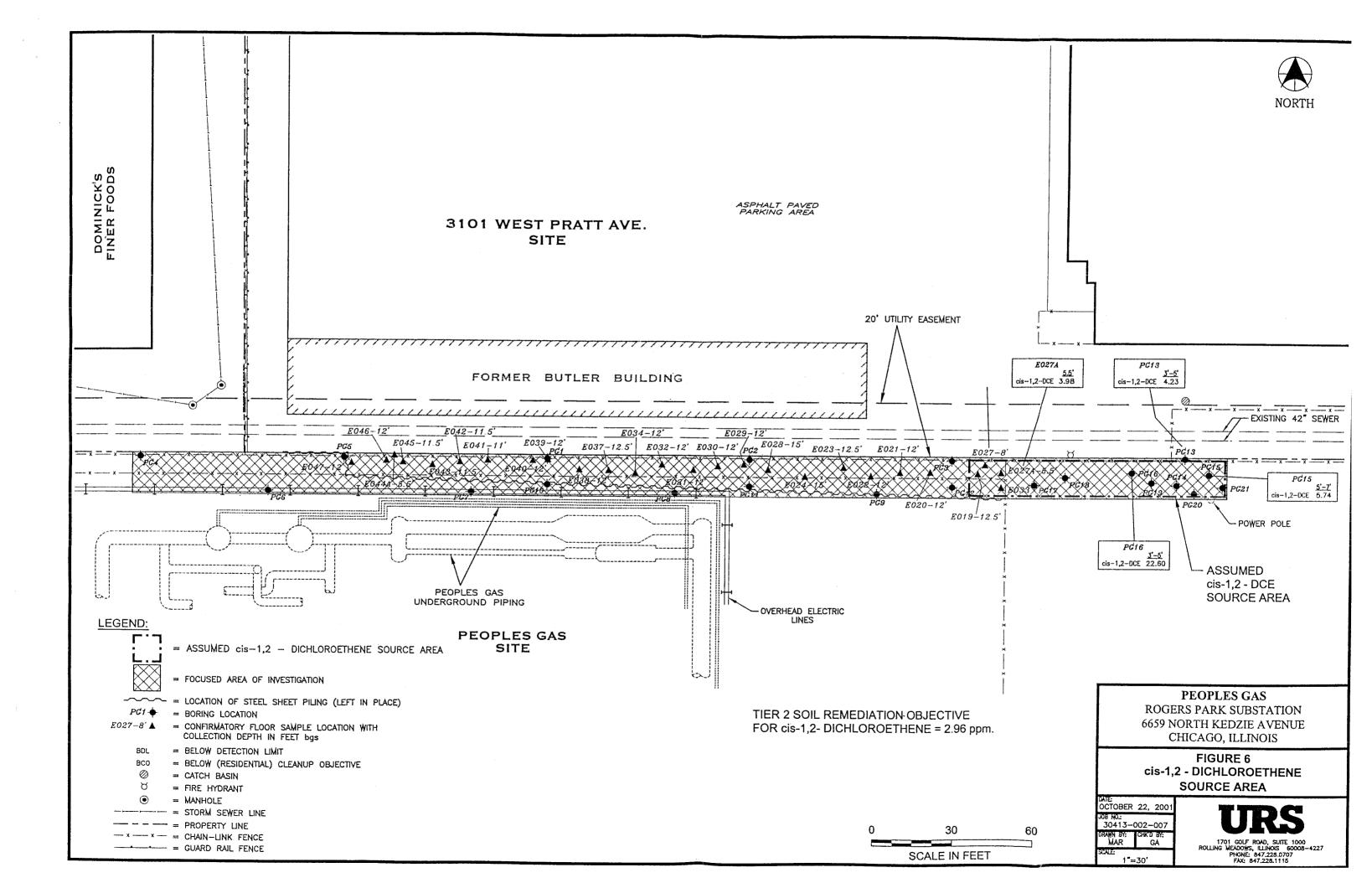

1) The maximum soil concentrations detected on site (See Tables A and 1) are presented in the


- second column.
- 2) The leaching factors for each chemical were calculated using equation R-14 and are presented in the third column. The calculation spreadsheets are provided later in this appendix.
- 3) The maximum groundwater concentration in column four was calculated by multiplying the maximum soil concentration (second column) by the calculated leaching factor (third column).
- 4) The groundwater concentrations at a distance of one foot from the source area are presented in the fifth column. The maximum groundwater concentrations (C_{source}) were used in the equation R-26 to determine the contaminant conditions at a distance of one foot from the source. The calculation spreadsheets are provided later in this appendix.
- 5) The sixth column in the above table presents the Class II groundwater standard for comparison purposes.
- 6) The seventh column in the table presents the solubility of the chemical in water for comparison against the maximum calculated groundwater concentration shown in column four. This demonstrates that the predicted potential concentrations are well below the solubility limit.


Based on the above comparison, it is evident that the worse case maximum concentration will not exceed the Class II groundwater standard at distance of one foot from the source area. The primary factor in attenuating the lateral flow of potentially impacted groundwater in such a short distance is the extremely low hydraulic conductivity of the site soils which serves to significantly retard such flow.


#### **Conclusions**


URS has assessed the potential for residual soil VOC impacts to migrate via leaching and groundwater transport beyond the focused area of investigation boundaries. The focused investigation area boundaries represent the aerial limits for which a No Further Remediation letter is sought. The results of the assessment indicate that potential groundwater impacts will not migrate even one foot from the source area before attenuating to concentrations well below the Class II groundwater remediation objectives.














## APPENDIX A

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
 -- CARCINOGENIC COMPOUND --
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
                      Peoples Gas
   Site =
                        9/19/2001
  Date =
                      RESIDENTIAL
 Scenario =
                                  trichloroethene
Contaminant of Concern =
                                   1.3204802
CALCULATED SSL (mg/kg) =
  (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING U
                                   2905.0565
Calculated Csat (mg/kg) =
 Where:
                   0.5 (calculated from parameters below, in mg/kg)
  Cw =
                2.407 (calculated from parameters below, in cm3/g)
   Kd =
                                   0.3677658 ted, in Lwater/Lsoil)
Water-filled soil porosity =
                                   0.0543796 lated, in Lair/Lsoil)
Air-filled soil porosity =
                0.422 emical specific)
   H' =
                                         1.67 specific, in g/cm3)
Dry Soil Bulk Density =
                                         2.89 specific, in g/cm3)
Soil Particle Density =
   DF =
                   20 (default)
                0.025 SEE NOTE BELOW (chemical specific- Appendix B Table E)
 GWobi =
                  166 al specific, in cm3/g)
  Koc =
               0.0145 specific, in g/g)
  foc =
                0.252; specific, in g/g)
   w =
Water Density =
           0.4221453 Lpore/Lsoil)
   n =
  TR =
             0.000001
                       (default)
  ATc =
                   70 default, in yr)
  SFo =
                0.011 ll specific, in kg-d/mg)
   S =
                 1100 al specific, in mg/L)
  IRw =
                    2 y site scenario, in L/d)
                  350 (default by site scenario, in d/yr)
   EF =
                   30 (default by site scenario, in yr)
   ED =
                   70 (default, in kg)
  BW =
                   0.3 (default, in m/yr)
|=
                    8 (default by soil type, APPENDIX C TABLE K, in m/yr)
Ks =
                0.042 (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
 GWobj = 0.0077424 eters above)
NOTE: The default value for GWobj is the Tier 1 groundwater objective
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
   -- CARCINOGENIC COMPOUND --
          LAST REVISED ON 15 SEPTEMBER 1997 BY JS
         Peoples Gas
 Date = 9/19/2001
                   INDUSTRIAL/COMMERCIAL
 Scenario =
Contaminant of Concern =
                             trichloroethene
                                1.320
CALCULATED SSL (mg/kg) =
     (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
                                2905.056
Calculated Csat (mg/kg) =
Where:
                    (calculated from parameters below, in mg/kg)
             0.5
Cw =
            2.407 (calculated from parameters below, in cm3/g)
Kd =
                             0.36776577 (calculated, in Lwater/Lsoil)
Water-filled soil porosity =
                               0.05437956 (calculated, in Lair/Lsoil)
Air-filled soil porosity =
               0.422 (chemical specific)
                                 1.67 (site specific, in g/cm3)
Dry Soil Bulk Density =
                                  2.89 (site specific, in g/cm3)
Soil Particle Density =
                    (default)
DF =
              20
                    SEE NOTE BELOW (chemical specific- Appendix B Table E
           0.025
GWobj =
                   (chemical specific, in cm3/g)
Koc =
            166
           0.0145 (site specific, in g/g)
foc =
            0.252 (site specific, in g/g)
Water Density =
         0.42214533 (calculated, in Lpore/Lsoil)
           0.000001 (default)
TR =
                   (default, in yr)
             70
ATC =
           0.011 (chemical specific, in kg-d/mg)
SFo =
                     (chemical specific, in mg/L)
             1100
S =
                     (default by site scenario, in L/d)
IRw =
              1
             250
                     (default by site scenario, in d/yr)
EF =
                     (default by site scenario, in yr)
ED =
             25
BW =
             70
                     (default, in kg)
             0.3
                     (default, in m/yr)
I =
                     (default by soil type, APPENDIX C TABLE K, in m/yr)
             8
Ks =
                     (default by soil type, APPENDIX C TABLE K)
            0.042
1/(2b+3) =
        0.02601455 (calculated from parameters above)
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
 - CARCINOGENIC COMPOUND -
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
                       Peoples Gas
   Site =
                         9/19/2001
  Date =
                       CONSTRUCTION WORKER
 Scenario =
                                   trichloroethene
Contaminant of Concern =
                                    1.3204802
CALCULATED SSL (mg/kg) =
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
                                    2905.0565
Calculated Csat (mg/kg) =
  Where:
                        (calculated from parameters below, in mg/kg)
               0.5
Cw =
                        (calculated from parameters below, in cm3/g)
               2.407
Kd =
                                    0.3677658 (calculated, in Lwater/Lsoil)
Water-filled soil porosity =
                                    0.0543796 (calculated, in Lair/Lsoil)
Air-filled soil porosity =
                 0.422 (chemical specific)
                                               (site specific, in g/cm3)
                                       1.67
Dry Soil Bulk Density =
                                               (site specific, in g/cm3)
Soil Particle Density =
                                       2.89
                20
                        (default)
DF =
                        SEE NOTE BELOW (chemical specific- Appendix B Table E)
GWobi =
               0.025
                        (chemical specific, in cm3/g)
Koc =
                166
                        (site specific, in g/g)
foc =
              0.0145
                        (site specific, in g/g)
w =
               0.252
Water Density =
            0.4221453 (calculated, in Lpore/Lsoil)
n =
             0.000001
                       (default)
TR =
ATc =
                70
                        (default, in yr)
               0.011
                        (chemical specific, in kg-d/mg)
SFo =
                        (chemical specific, in mg/L)
S =
               1100
                        (default by site scenario, in L/d)
IRw =
                 1
                        (default by site scenario, in d/yr)
                30
EF =
                        (default by site scenario, in yr)
ED =
                 1
                70
                        (default, in kg)
BW =
                        (default, in m/yr)
                0.3
1=
                        (default by soil type, APPENDIX C TABLE K, in m/yr)
Ks =
                 8
                        (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
               0.042
             5.419697 (calculated from parameters above)
GWobj =
NOTE: The default value for GWobj is the Tier 1 groundwater objective
```

but the value of cell B41 can be used instead.

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
 -- CARCINOGENIC COMPOUND --
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
                      Peoples Gas
   Site =
  Date =
                        9/19/2001
                      RESIDENTIAL
 Scenario =
                                  tetrachloroethene
Contaminant of Concern =
CALCULATED SSL (mg/kg) = 1.2461356
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING U
Calculated Csat (mg/kg) =
                                  498.45425
 Where:
                  0.5 (calculated from parameters below, in mg/kg)
  Cw =
               2.2475 (calculated from parameters below, in cm3/g)
   Kd =
                                  0.3677658 ted, in Lwater/Lsoil)
Water-filled soil porosity =
                                  0.0543796 lated, in Lair/Lsoil)
Air-filled soil porosity =
   H' =
                0.754 emical specific)
                                         1.67 specific, in g/cm3)
Dry Soil Bulk Density =
                                         2.89 specific, in g/cm3)
Soil Particle Density =
   DF =
                   20 (default)
                0.025 SEE NOTE BELOW (chemical specific- Appendix B Table E)
 GWobj =
                  155 al specific, in cm3/g)
  Koc =
   foc =
               0.0145; specific, in g/g)
   w =
                0.252) specific, in g/g)
Water Density =
           0.4221453 Lpore/Lsoil)
   n =
   TR =
                        (default)
            0.000001
                   70 default, in yr)
  ATc =
                0.052 ll specific, in kg-d/mg)
  SFo =
                  200 al specific, in mg/L)
   S =
  IRw =
                    2 y site scenario, in L/d)
                  350 (default by site scenario, in d/yr)
   EF =
                   30 (default by site scenario, in yr)
   ED =
  BW =
                   70 (default, in kg)
                  0.3 (default, in m/yr)
|=
                    8 (default by soil type, APPENDIX C TABLE K, in m/yr)
Ks =
                0.042 (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
 GWobi = 0.0016378 eters above)
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
   -- CARCINOGENIC COMPOUND --
          LAST REVISED ON 15 SEPTEMBER 1997 BY JS
  Site = Peoples Gas
  Date = 9/19/2001
                   INDUSTRIAL/COMMERCIAL
  Scenario =
Contaminant of Concern = tetrachloroethene
                                 1.246
CALCULATED SSL (mg/kg) =
     (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
                                498.454
Calculated Csat (mg/kg) =
Where:
                    (calculated from parameters below, in mg/kg)
Cw =
             0.5
            2.2475 (calculated from parameters below, in cm3/g)
Kd =
                              0.36776577 (calculated, in Lwater/Lsoil)
Water-filled soil porosity =
                              0.05437956 (calculated, in Lair/Lsoil)
Air-filled soil porosity =
               0.754 (chemical specific)
                                         (site specific, in g/cm3)
                                  1.67
Dry Soil Bulk Density =
                                  2.89 (site specific, in g/cm3)
Soil Particle Density =
                    (default)
DF =
              20
           0.025 SEE NOTE BELOW (chemical specific- Appendix B Table E
GWobj =
                   (chemical specific, in cm3/g)
Koc =
             155
foc =
            0.0145 (site specific, in g/g)
            0.252 (site specific, in g/g)
Water Density =
         0.42214533 (calculated, in Lpore/Lsoil)
          0.000001 (default)
TR =
                    (default, in yr)
ATC =
             70
                     (chemical specific, in kg-d/mg)
SFo =
           0.052
                    (chemical specific, in mg/L)
S =
             200
                     (default by site scenario, in L/d)
IRw =
              1
                     (default by site scenario, in d/yr)
EF =
              250
              25
                     (default by site scenario, in yr)
ED =
                    (default, in kg)
BW =
             70
                    (default, in m/yr)
             0.3
T ==
                    (default by soil type, APPENDIX C TABLE K, in m/yr)
Ks =
             8
                    (default by soil type, APPENDIX C TABLE K)
1/(2b+3) = 0.042
          0.00550308 (calculated from parameters above)
```

#### SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE - CARCINOGENIC COMPOUND -LAST REVISED ON 15 SEPTEMBER 1997 BY JS Peoples Gas Site = 9/19/2001 Date = CONSTRUCTION WORKER Scenario = Contaminant of Concern = tetrachloroethene 1.2461356 CALCULATED SSL (mg/kg) = (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT) 498.45425 Calculated Csat (mg/kg) = Where: Cw = 0.5 (calculated from parameters below, in mg/kg) (calculated from parameters below, in cm3/g) Kd =2.2475 0.3677658 (calculated, in Lwater/Lsoil) Water-filled soil porosity = 0.0543796 (calculated, in Lair/Lsoil) Air-filled soil porosity = H' = 0.754 (chemical specific) (site specific, in g/cm3) Dry Soil Bulk Density = 1.67 (site specific, in g/cm3) Soil Particle Density = 2.89 DF = 20 (default) SEE NOTE BELOW (chemical specific- Appendix B Table E) GWobi = 0.025 (chemical specific, in cm3/g) Koc = 155 foc = (site specific, in g/g) 0.0145 (site specific, in g/g) w = 0.252 Water Density = 0.4221453 (calculated, in Lpore/Lsoil) n = TR = 0.000001 (default) 70 (default, in vr) ATc = SFo = 0.052 (chemical specific, in kg-d/mg) (chemical specific, in mg/L) S = 200 1 (default by site scenario, in L/d) IRw = (default by site scenario, in d/yr) EF = 30 (default by site scenario, in yr) ED = 1 70 (default, in kg) BW = **]**= 0.3 (default, in m/yr) (default by soil type, APPENDIX C TABLE K, in m/yr) Ks = 8

GWobj = 1.1464744 (calculated from parameters above)

0.042

1/(2b+3) =

NOTE: The default value for GWobj is the Tier 1 groundwater objective but the value of cell B41 can be used instead.

(default by soil type, APPENDIX C TABLE K)

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
  -- CARCINOGENIC COMPOUND --
            LAST REVISED ON 15 SEPTEMBER 1997 BY JS
    Site =
                       Peoples Gas
   Date =
                         9/19/2001
 Scenario =
                       RESIDENTIAL
Contaminant of Concern =
                                   vinyl chloride
CALCULATED SSL (mg/kg) =
                                    0.1052127
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UI
Calculated Csat (mg/kg) =
                                     925.8718
  Where:
   Cw =
                   0.2 (calculated from parameters below, in mg/kg)
   Kd =
                0.2697 (calculated from parameters below, in cm3/g)
Water-filled soil porosity =
                                   0.3677658 ted, in Lwater/Lsoil)
Air-filled soil porosity =
                                   0.0543796 lated, in Lair/Lsoil)
    H' =
                  1.11 emical specific)
Dry Soil Bulk Density =
                                         1.67 specific, in g/cm3)
Soil Particle Density =
                                         2.89 specific, in g/cm3)
   DF =
                       (default)
 GWobi =
                  0.01 SEE NOTE BELOW (chemical specific- Appendix B Table E)
  Koc =
                  18.6 al specific, in cm3/g)
   foc =
                0.0145; specific, in g/g)
    w =
                 0.252 specific, in g/g)
Water Density =
            0.4221453 Lpore/Lsoil)
    n =
   TR =
             0.000001
                        (default)
  ATc =
                    70 default, in yr)
  SFo =
                   1.9 specific, in kg-d/mg)
   S =
                 1760 al specific, in mg/L)
  IRw =
                     2 y site scenario, in L/d)
   EF =
                  350 (default by site scenario, in d/yr)
   ED =
                    30 (default by site scenario, in yr)
  BW =
                   70 (default, in kg)
|=
                   0.3 (default, in m/yr)
                     8 (default by soil type, APPENDIX C TABLE K, in m/yr)
Ks =
                0.042 (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
 GWobi =
            4.482E-05 eters above)
NOTE: The default value for GWobj is the Tier 1 groundwater objective
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
   -- CARCINOGENIC COMPOUND --
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
  Site = Peoples Gas
  Date = 9/19/2001
  Scenario =
                     INDUSTRIAL/COMMERCIAL
Contaminant of Concern =
                              vinyl chloride
CALCULATED SSL (mg/kg) =
                                  0.105
     (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
Calculated Csat (mg/kg) =
                                 925.872
Where:
                     (calculated from parameters below, in mg/kg)
Cw =
              0.2
Kd =
             0.2697 (calculated from parameters below, in cm3/g)
Water-filled soil porosity = 0.36776577 (calculated, in Lwater/Lsoil)
Air-filled soil porosity =
                               0.05437956 (calculated, in Lair/Lsoil)
                1.11 (chemical specific)
                                   1.67 (site specific, in g/cm3)
Dry Soil Bulk Density =
                                   2.89 (site specific, in g/cm3)
Soil Particle Density =
DF =
              20
                     (default)
                     SEE NOTE BELOW (chemical specific- Appendix B Table E
GWobi =
              0.01
             18.6
                    (chemical specific, in cm3/g)
Koc =
             0.0145 (site specific, in g/g)
foc =
             0.252 (site specific, in g/g)
Water Density =
          0.42214533 (calculated, in Lpore/Lsoil)
           0.000001 (default)
TR =
              70
                     (default, in yr)
ATc =
                     (chemical specific, in kg-d/mg)
SFo =
             1...9
S =
             1760
                     (chemical specific, in mg/L)
              1
                     (default by site scenario, in L/d)
IRw =
EF =
              250
                     (default by site scenario, in d/yr)
              25
                     (default by site scenario, in yr)
ED =
                     (default, in kg)
BW =
              70
I=
              0.3
                     (default, in m/yr)
Ks =
               8
                     (default by soil type, APPENDIX C TABLE K, in m/yr)
1/(2b+3) = 0.042
                     (default by soil type, APPENDIX C TABLE K)
```

GWobj = 0.00015061 (calculated from parameters above)

NOTE: The default value for GWobj is the Tier 1 groundwater objective

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
  - CARCINOGENIC COMPOUND -
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
                       Peoples Gas
   Site =
                         9/19/2001
   Date =
                       CONSTRUCTION WORKER
 Scenario =
Contaminant of Concern =
                                   vinyl chloride
                                    0.1052127
CALCULATED SSL (mg/kg) =
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
                                     925.8718
Calculated Csat (mg/kg) =
  Where:
Cw =
               0.2
                       (calculated from parameters below, in mg/kg)
                       (calculated from parameters below, in cm3/g)
Kd =
              0.2697
                                    0.3677658 (calculated, in Lwater/Lsoil)
Water-filled soil porosity =
                                    0.0543796 (calculated, in Lair/Lsoil)
Air-filled soil porosity =
                  1.11 (chemical specific)
                                               (site specific, in g/cm3)
Dry Soil Bulk Density =
                                      1.67
Soil Particle Density =
                                      2.89
                                               (site specific, in g/cm3)
DF =
                20
                       (default)
                       SEE NOTE BELOW (chemical specific- Appendix B Table E)
GWobi =
               0.01
Koc =
                       (chemical specific, in cm3/g)
               18.6
                       (site specific, in q/q)
foc =
              0.0145
w =
                       (site specific, in g/g)
              0.252
Water Density =
            0.4221453 (calculated, in Lpore/Lsoil)
n =
            0.000001
TR =
                       (default)
ATc =
               70
                       (default, in yr)
SFo=
               1.9
                       (chemical specific, in kg-d/mg)
S =
               1760
                       (chemical specific, in mg/L)
                       (default by site scenario, in L/d)
IRw =
                1
               30
                       (default by site scenario, in d/yr)
EF =
                       (default by site scenario, in yr)
ED =
                1
BW =
               70
                       (default, in kg)
=
               0.3
                       (default, in m/yr)
Ks =
                8
                       (default by soil type, APPENDIX C TABLE K, in m/yr)
                       (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
              0.042
```

GWobj = 0.0313772 (calculated from parameters above)

NOTE: The default value for GWobj is the Tier 1 groundwater objective but the value of cell B41 can be used instead.

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
  -- CARCINOGENIC COMPOUND --
            LAST REVISED ON 15 SEPTEMBER 1997 BY JS
    Site =
                       Peoples Gas
                         10/16/2001
   Date =
  Scenario =
                       RESIDENTIAL
Contaminant of Concern =
                                     cis-1.2-dichloroethene
CALCULATED SSL (mg/kg) =
                                     2.9616279
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UN
Calculated Csat (mg/kg) =
                                     2591.4244
  Where:
   Cw =
                     4 (calculated from parameters below, in mg/kg)
   Kd =
               0.51475 (calculated from parameters below, in cm3/g)
Water-filled soil porosity =
                                     0.3677658 ted, in Lwater/Lsoil)
Air-filled soil porosity =
                                     0.0543796 lated, in Lair/Lsoil)
    H' =
                 0.167 remical specific)
Dry Soil Bulk Density =
                                           1.67 specific, in g/cm3)
Soil Particle Density =
                                           2.89 specific, in g/cm3)
   DF =
                         (default)
                    20
 GWobi =
                   0.2 SEE NOTE BELOW (chemical specific- Appendix B Table E)
   Koc =
                  35.5 al specific, in cm3/g)
   foc =
                0.0145 e specific, in g/g)
                 0.252 e specific, in g/g)
    w =
Water Density =
            0.4221453 1 Lpore/Lsoil)
    n =
   TR =
             0.000001
                         (default)
  ATc =
                    70 (default, in yr)
  SFo =
                       al specific, in kg-d/mg)
    S =
                 3500 cal specific, in mg/L)
  IRw =
                     2 y site scenario, in L/d)
   EF =
                  350 (default by site scenario, in d/yr)
   ED =
                    30 (default by site scenario, in yr)
  BW =
                    70 (default, in kg)
|=
                   0.3 (default, in m/yr)
Ks =
                     8 (default by soil type, APPENDIX C TABLE K, in m/yr)
1/(2b+3) =
                0.042 (default by soil type, APPENDIX C TABLE K)
 GWobi =
             #DIV/0! neters above)
NOTE: The default value for GWobj is the Tier 1 groundwater objective
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
   -- CARCINOGENIC COMPOUND --
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
  Site = Peoples Gas
  Date = 10/16/2001
  Scenario =
                     INDUSTRIAL/COMMERCIAL
Contaminant of Concern =
                               cis-1.2-dichloroethene
CALCULATED SSL (mg/kg) =
                                   2.962
     (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
Calculated Csat (mg/kg) =
                                 2591.424
Where:
                      (calculated from parameters below, in mg/kg)
Cw =
            0.51475 (calculated from parameters below, in cm3/g)
Water-filled soil porosity =
                                0.36776577 (calculated, in Lwater/Lsoil)
Air-filled soil porosity =
                                0.05437956 (calculated, in Lair/Lsoil)
H' =
                0.167 (chemical specific)
Dry Soil Bulk Density =
                                   1.67 (site specific, in g/cm3)
Soil Particle Density =
                                   2.89 (site specific, in g/cm3)
DF =
               20
                     (default)
GWobj =
             0.2
                     SEE NOTE BELOW (chemical specific- Appendix B Table E
             35.5 (chemical specific, in cm3/g)
Koc =
foc =
             0.0145 (site specific, in g/g)
             0.252
                     (site specific, in g/g)
Water Density =
          0.42214533 (calculated, in Lpore/Lsoil)
n =
TR =
           0.000001 (default)
ATC =
              70
                      (default, in yr)
                      (chemical specific, in kg-d/mg)
SFo =
S =
             3500
                     (chemical specific, in mg/L)
                     (default by site scenario, in L/d)
IRw =
               1
EF =
              250
                     (default by site scenario, in d/yr)
ED =
              25
                     (default by site scenario, in yr)
                     (default, in kg)
BW =
              70
I=
              0.3
                     (default, in m/yr)
Ks =
               8
                     (default by soil type, APPENDIX C TABLE K, in m/yr)
1/(2b+3) =
             0.042
                     (default by soil type, APPENDIX C TABLE K)
GWobj =
            #DIV/0!
                     (calculated from parameters above)
```

```
SSL FOR THE SOIL COMPONENT OF THE GROUNDWATER EXPOSURE ROUTE
  - CARCINOGENIC COMPOUND -
           LAST REVISED ON 15 SEPTEMBER 1997 BY JS
                       Peoples Gas
   Site =
   Date =
                         10/16/2001
                        CONSTRUCTION WORKER
 Scenario =
Contaminant of Concern =
                                     cis-1,2-dichloroethene
CALCULATED SSL (mg/kg) =
                                     2.9616279
   (TO BE USED ONLY IF CONTAMINATION IS NOT IN THE WATER BEARING UNIT)
Calculated Csat (mg/kg) =
                                     2591.4244
  Where:
Cw =
                4
                       (calculated from parameters below, in mg/kg)
Kd =
             0.51475
                       (calculated from parameters below, in cm3/g)
                                     0.3677658 (calculated, in Lwater/Lsoil)
Water-filled soil porosity =
Air-filled soil porosity =
                                     0.0543796 (calculated, in Lair/Lsoil)
                 0.167 (chemical specific)
                                                (site specific, in g/cm3)
Dry Soil Bulk Density =
                                        1.67
Soil Particle Density =
                                                (site specific, in g/cm3)
                                        2.89
DF =
                20
                       (default)
GWobj =
               0.2
                       SEE NOTE BELOW (chemical specific- Appendix B Table E)
                       (chemical specific, in cm3/g)
Koc =
               35.5
                       (site specific, in g/g)
foc =
              0.0145
w =
                       (site specific, in g/g)
              0.252
Water Density =
            0.4221453 (calculated, in Lpore/Lsoil)
n =
            0.000001 (default)
TR =
                70
                       (default, in yr)
ATc =
                       (chemical specific, in kg-d/mg)
SFo =
S =
                       (chemical specific, in mg/L)
               3500
IRw =
                1
                       (default by site scenario, in L/d)
                30
                       (default by site scenario, in d/yr)
EF =
ED =
                1
                       (default by site scenario, in yr)
                       (default, in kg)
BW =
               70
1=
                       (default, in m/yr)
               0.3
Ks =
                       (default by soil type, APPENDIX C TABLE K, in m/yr)
                8
                       (default by soil type, APPENDIX C TABLE K)
1/(2b+3) =
              0.042
```

NOTE: The default value for GWobj is the Tier 1 groundwater objective but the value of cell B41 can be used instead.

(calculated from parameters above)

GWobi =

#DIV/0!



## **Trichloroethene**

$$LF_{sw}\left(\frac{mg/L_{water}}{mg/kg_{soil}}\right) = \frac{\rho_{s}}{\left[\theta_{ws} + k_{s} \rho_{s} + H \theta_{as}\right]\left(1 + \frac{U_{gw} \delta_{gw}}{IW}\right)}$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Leaching Factor	LF _{sw}	(mg/L)/ (kg/L)	0.161	R14
Soil bulk density	$\rho_{s}$	g/cm³	1.675	Site specific-geotechnical data Table B
Volumetric water content in vadose zone soils	θ _{ws}	cm ³ /cm ³	0.17	Default value –clay Appendix C Table D
Volumetric air content in vadose zone soils	$\theta_{as}$	cm³/cm³	0.17	Default value –clay Appendix C Table D
Soil-water sorption coefficient	k _s	cm³/g	6.059	Calculated value (R20)
Organic carbon partition coefficient	K₀c	cm ^g /g or L/kg	166	Chemical Specific Appendix C, Table E
Organic carbon content of soil	$\mathrm{f}_{\infty}$	g/g	0.0365	Site Specific Geotechnical data Table B
Henry's Law constant	Н	cm³/cm³	0.422	Chemical Specific Appendix C, Table E
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity*	K	ст/уг	0.566	Site Specific Geotechnical data Table B
Groundwater Darcy Velocity (Ki)	$ m U_{gw}$	cm/yr	0.042	Calculated value (R24)
Ground water mixing zone thickness	$\delta_{gw}$	cm	200	Default value –RBCA
Infiltration rate of water through soil (cm/yr)	I	cm/yr	30	default value-RBCA
Width of source area parallel to ground water flow	w	cm	3352.8 cm (110 ft)	Site Specific (based on analytical results- Figure 2)

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

#### Trichloroethene

$$Cx = C_{source} * \exp \left[ \frac{x}{2 \alpha_x} \left( 1 - \sqrt{\left( 1 + \frac{4 \lambda \alpha_x}{U} \right)} \right) \right] \left[ erf \left( \frac{S_w}{4 \sqrt{\alpha_y x}} \right) \right] \left[ erf \left( \frac{S_d}{2 \sqrt{\alpha_z x}} \right) \right]$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Concentration at distance X from the source	C _x	mg/l	1.41 * 10-6	Calculated
Concentration at the source	C _{source}	mg/l	8.93	Site Specific – calculated
Distance along plume centerline from source	X	cm	30.48	Site Specific- calculated
longitudinal dispersivity	α _x	cm	3.048	Equation R16
transverse dispersivity	α _y	cm	1.016	Equation R17
Vertical dispersivity	$a_z$	cm	0.1524	Equation R18
First order degradation constant	λ	1/d	0.00042	Appendix C, Table E TACO
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity	К	cm/d	0.00155	Site Specific Geotechnical data Table B
Total Soil Porosity	$\Theta_{\rm t}$	cm³/cm³	0.36	Default value (clay)
Specific Discharge	U	cm/d	0.00032	Equation R19
Source width perpendicular to groundwater flow direction in horizontal plane	S _w	cm	853.44 cm (28 ft)	Site Specific – based on analytical results (Figure 2)
Source width perpendicular to groundwater flow direction in vertical plane	S _d	cm	200	Default value

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

## **Tetrachloroethene**

$$LF_{sw} \left( \frac{mg/L_{water}}{mg/kg_{soil}} \right) = \frac{\rho_s}{\left[ \theta_{ws} + k_s \rho_s + H \theta_{as} \right] \left( 1 + \frac{U_{gw} \delta_{gw}}{IW} \right)}$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Leaching Factor	LF _{sw}	(mg/L)/ (kg/L)	0.171	R14
Soil bulk density	ρ _s	g/cm ³	1.675	Site specific-geotechnical data Table -B
Volumetric water content in vadose zone soils	$\theta_{ws}$	cm³/cm³	0.17	Default value –clay Appendix C Table D
Volumetric air content in vadose zone soils	$\theta_{as}$	cm ³ /cm ³	0.17	Default value -clay Appendix C Table D
Soil-water sorption coefficient	k,	cm³/g	5.658	Calculated value (R20)
Organic carbon partition coefficient	K₀c	cm ^g /g or L/kg	155	Chemical Specific Appendix C, Table E
Organic carbon content of soil	$\mathrm{f}_{\infty}$	g/g	0.0365	Site Specific Geotechnical data Table B
Henry's Law constant	Н	cm ³ /cm ³	0.754	Chemical Specific Appendix C, Table E
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity	K	cm/yr	0.566	Site Specific Geotechnical data Table B
Groundwater Darcy Velocity (Ki)	$\mathrm{U}_{gw}$	cm/yr	0.042	Calculated value (R24)
Ground water mixing zone thickness	$\delta_{ m gw}$	cm	200	Default value –RBCA
Infiltration rate of water through soil (cm/yr)	I	cm/yr	30	default value-RBCA
Width of source area parallel to ground water flow	W	cm	1676.4 cm (55 ft)	Site Specific (based on analytical results Figure 2)

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

### **Tetrachloroethene**

$$Cx = C_{source} * \exp \left[ \frac{x}{2 \alpha_x} \left( 1 - \sqrt{\left( 1 + \frac{4 \lambda \alpha_x}{U} \right)} \right) \right] \left[ erf \left( \frac{S_w}{4 \sqrt{\alpha_y x}} \right) \right] \left[ erf \left( \frac{S_d}{2 \sqrt{\alpha_z x}} \right) \right]$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Concentration at distance X from the source	C _x	mg/l	4.82*10 ⁻¹¹	Calculated
Concentration at the source	C _{source}	mg/l	7.09	Site Specific - calculated
Distance along plume centerline from source	X	cm	30.48	Site Specific - calculated
longitudinal dispersivity	$\alpha_{x}$	cm	3.048	Equation R16
transverse dispersivity	α _y	cm	1.016	Equation R17
Vertical dispersivity	$\alpha_z$	cm	0.152	Equation R18
First order degradation constant	λ	1/d	0.00096	Appendix C, Table E - TACO
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity	K	cm/d	0.00155	Site Specific Geotechnical data Table B
Total Soil Porosity	$\Theta_{t}$	cm³/cm³	0.36	Default value (clay)
Specific Discharge	U	cm/d	0.00032	Equation R19
Source width perpendicular to groundwater flow direction in horizontal plane	S _w	cm	853.44 cm (28 ft)	Site Specific -based on analytical results (Figure 2)
Source width perpendicular to groundwater flow direction in vertical plane	S _d	cm	200	Default value

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

#### Vinyl Chloride

$$LF_{sw} \left( \frac{mg/L_{water}}{mg/kg_{soil}} \right) = \frac{\rho_s}{\left[ \theta_{ws} + k_s \rho_s + H \theta_{as} \right] \left( 1 + \frac{U_{gw} \delta_{gw}}{IW} \right)}$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Leaching Factor	LF _{sw}	(mg/L)/ (kg/L)	1.12	R14
Soil bulk density	ρ _s	g/cm ³	1.675	Site specific- geotechnical data Table B
Volumetric water content in vadose zone soils	$\theta_{ws}$	cm³/cm³	0.17	Default value –clay Appendix C Table D
Volumetric air content in vadose zone soils	$\theta_{as}$	cm ³ /cm ³	0.17	Default value –clay Appendix C Table D
Soil-water sorption coefficient	k _s	cm³/g	0.679	Calculated value (R20)
Organic carbon partition coefficient	K _{oc}	cm ^g /g or L/kg	18.6	Chemical Specific Appendix C, Table E
Organic carbon content of soil	$f_{oc}$	g/g	0.0365	Site Specific Geotechnical data Table B
Henry's Law constant	Н	cm³/cm³	1.11	Chemical Specific Appendix C, Table E
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity*	K	cm/yr	0.566	Site Specific Geotechnical data Table B
Groundwater Darcy Velocity (Ki)	$U_{\sf gw}$	ст/ут	0.042	Calculated value (R24)
Ground water mixing zone thickness	$\delta_{\sf gw}$	cm	200	Default value -RBCA
Infiltration rate of water through soil (cm/yr)	I	cm/yr	30	default value-RBCA
Width of source area parallel to ground water flow	W	cm	9753.6 cm (320 ft)	Site Specific (based on analytical results Figure 2)

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

#### Vinyl Chloride

$$Cx = C_{source} * \exp \left[ \frac{x}{2 \alpha_x} \left( 1 - \sqrt{\left( 1 + \frac{4 \lambda \alpha_x}{U} \right)} \right) \right] \left[ erf \left( \frac{S_w}{4 \sqrt{\alpha_y x}} \right) \right] \left[ erf \left( \frac{S_d}{2 \sqrt{\alpha_z x}} \right) \right]$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Concentration at distance X from the source	C _x	mg/l	1.40*10 ⁻⁵	Calculated
Concentration at the source	C _{source}	mg/l	0.80	Site Specific – calculated
Distance along plume centerline from source	X	cm	30.48	Site Specific - calculated
longitudinal dispersivity	α _x	cm	3.048	Equation R16
transverse dispersivity	α _y	cm	1.016	Equation R17
Vertical dispersivity	α ₂	cm	0.457	Equation R18
First order degradation constant	λ	1/d	0.00024	Appendix C, Table E -TACO
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site)
Aquifer hydraulic conductivity	K	cm/d	0.00155	Site Specific Geotechnical data Table B
Total Soil Porosity	$\Theta_{t}$	cm ³ /cm ³	0.36	Default value (clay)
Specific Discharge	U	cm/d	0.00032	Equation R19
Source width perpendicular to groundwater flow direction in horizontal plane	S _w	cm	853.44 cm (28 ft)	Site Specific – based on analytical results (Figure 2)
Source width perpendicular to groundwater flow direction in vertical plane	S _d	cm	200	Default value

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

## Cis 1,2-DCE

$$LF_{sw} \left( \frac{mg/L_{water}}{mg/kg_{soil}} \right) = \frac{\rho_s}{\left[ \theta_{ws} + k_s \rho_s + H \theta_{as} \right] \left( 1 + \frac{U_{gw} \delta_{gw}}{IW} \right)}$$

PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Leaching Factor	LF _{sw}	(mg/L)/ (kg/L)	0.707	R14
Soil bulk density	$\rho_{s}$	g/cm ³	1.675	Site specific- geotechnical data Table B
Volumetric water content in vadose zone soils	$\theta_{ws}$	cm³/cm³	0.17	Default value –clay Appendix C Table D
Volumetric air content in vadose zone soils	$\theta_{as}$	cm³/cm³	0.17	Default value -clay Appendix C Table D
Soil-water sorption coefficient	k _s	cm³/g	1.296	Calculated value (R20)
Organic carbon partition coefficient	K _{oc}	cm ⁸ /g or L/kg	35.5	Chemical Specific Appendix C, Table E
Organic carbon content of soil	$f_{oc}$	g/g	0.0365	Site Specific Geotechnical data Table B
Henry's Law constant	Н	cm³/cm³	0.167	Chemical Specific Appendix C, Table E
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site Figure 1)
Aquifer hydraulic conductivity*	K	cm/yr	0.566	Site Specific Geotechnical data Table B
Groundwater Darcy Velocity (Ki)	$\mathrm{U_{gw}}$	cm/yr	0.042	Calculated value (R24)
Ground water mixing zone thickness	$\delta_{ m gw}$	cm	200	Default value –RBCA
Infiltration rate of water through soil (cm/yr)	I	cm/yr	30	default value-RBCA
Width of source area parallel to ground water flow	W	cm	2895.6 cm (95 ft)	Site Specific (based on analytical results Figure 2)

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

#### Cis 1,2-DCE

$$Cx = C_{source} * \exp \left[ \frac{x}{2\alpha_x} \left( 1 - \sqrt{\left( 1 + \frac{4\lambda \alpha_x}{U} \right)} \right) \right] \left[ erf \left( \frac{S_w}{4\sqrt{\alpha_y x}} \right) \right] \left[ erf \left( \frac{S_d}{2\sqrt{\alpha_z x}} \right) \right]$$

	1	1	T	T
PARAMETER	SYMBOL	UNIT	VALUE	SOURCE
Concentration at distance X from the source	C _x	mg/l	2.79*10 ⁻⁴	Calculated
Concentration at the source	C _{source}	mg/l	15.98	Site Specific – calculated
Distance along plume centerline from source	Х	Cm	30.48	Site Specific - calculated
longitudinal dispersivity	$\alpha_{x}$	Cm	3.048	Equation R16
transverse dispersivity	α,	cm	1.016	Equation R17
Vertical dispersivity	$\alpha_z$	cm	0.457	Equation R18
First order degradation constant	λ	1/d	0.00024	Appendix C, Table E -TACO
Hydraulic gradient	i	cm/cm	0.074	Site specific (ground water elevation 03/31/95 CP Clare site)
Aquifer hydraulic conductivity	К	cm/d	0.00155	Site Specific Geotechnical data Table B
Total Soil Porosity	$\Theta_{t}$	cm ³ /cm ³	0.36	Default value (clay)
Specific Discharge	U	cm/d	0.00032	Equation R19
Source width perpendicular to groundwater flow direction in horizontal plane	S _w	cm	853.44 cm (28 ft)	Site Specific – based on analytical results (Figure 2)
Source width perpendicular to groundwater flow direction in vertical plane	S _d	cm	200	Default value

^{*} Laboratory measurement of permeability (K)=1.79 x 10⁻⁸ cm/sec or 0.00155 cm/day.

# Appendix H Professional Engineer Certification



#### PROFESSIONAL ENGINEER CERTIFICATION

I attest that all site investigations and remedial activities that are the subject of this plan or report were performed under my direction and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan or report has been designed or completed in accordance with the Act, 35 Ill. Adm. Code 740, and generally accepted engineering practices, and the information presented is accurate and complete.

Gail Artrip - Principal/Senior Engineer	062-046109	
Name - Title	Illinois P.E. Number	
Dail O	November 30, 2003	
Signature	Expiration Date	